Citation: Huang Haiyang, Ding Haixin, Xu Shuangshuang, Bai Jiang, Xiao Qiang. Progress in the Synthesis and Applications of Phosphaalkenes[J]. Chinese Journal of Organic Chemistry, ;2019, 39(5): 1263-1276. doi: 10.6023/cjoc201811038 shu

Progress in the Synthesis and Applications of Phosphaalkenes

  • Corresponding author: Xiao Qiang, xiaoqiang@tsinghua.org.cn
  • Received Date: 29 November 2018
    Revised Date: 27 December 2018
    Available Online: 31 May 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21462019, 21676131), the Bureau of Science & Technology of Jiangxi Province (No. 20143ACB20012), the Education Department of Jiangxi Province (No. GJJ180625) and the Ph.D Start-up Funds of Jiangxi Science & Technology Normal University (No. 2018BSQD025)the National Natural Science Foundation of China 21462019the National Natural Science Foundation of China 21676131the Ph.D Start-up Funds of Jiangxi Science & Technology Normal University 2018BSQD025the Bureau of Science & Technology of Jiangxi Province 20143ACB20012the Education Department of Jiangxi Province GJJ180625

Figures(44)

  • The phosphaalkenes, as an important part of organophosphorus chemistry, play a very important role in the field of homogeneous catalysis and functional materials due to special properties of P=C unit. However, the difficult access to phosphaalkene compounds and their less stability have severely retarded the progress of the phosphaalkene chemistry. In this paper, the recent advances in phosphaalkenes, introducing the properties, synthetic methods, and applications of phosphaalkenes to provide some reference for related researcher are reviewed.
  • 加载中
    1. [1]

      (a) Appel, R.; Knoll, F.; Ruppert, I. Angew. Chem. 1981, 93, 771.
      (b) Appel, R.; Knoll, F. Adv. Inorg. Chem. 1989, 33, 259.
      (c) Markovski, L. N.; Romanenko, V. D. Tetrahedron 1989, 45, 6019.
      (d) Regitz, M.; Binger, P. Angew. Chem. 1988, 100, 1541.
      (e) Mathey F. Angew. Chem., Int. Ed. 2003, 42, 1578.
      (f) Gates, D. P. New Aspects in Phosphorus Chemistry V. Springer, Berlin, Heidelberg, 2005, pp. 107~126.
      (g) Russell, C. A. Coord. Chem. Rev. 2015, 297, 146.
      (h) Regulska, E.; Romero-Nieto, C. Dalton Trans. 2018, 47, 10344.
      (i) Tokarz, P.; Zagórski, P. M. Chem. Heterocycl. Compd. 2017, 53, 858.
      (j) Francois, M.; Duan, Z. Sci. Sin.: Chim. 2010, 40, 888(in Chinese).
      (Francois, M., 段征, 中国科学: 化学, 2010, 40, 888.)

    2. [2]

      (a) Dimroth, K.; Hoffmann, P. Angew. Chem., Int. Ed. 1964, 3, 384.
      (b) Allmann R. Angew. Chem., Int. Ed. 1965, 4, 150.

    3. [3]

      Märkl, G. Angew. Chem., Int. Ed. 1966, 5, 846.

    4. [4]

      (a) Keglevich, G.; Farkas, R.; Ludányi, K.; Kudar, V.; Hanusz, M.; Simon, K. Heteroat. Chem. 2005, 16, 104.
      (b) Deschamps, E.; Ricard, L.; Mathey, F. Organometallics 2001, 20, 1499.
      (c) Markovskii, L. N.; Romanenko, V. D.; Ruban, A. V.; Iksanova, S. V. Zhur. Obshch. Khim. 1982, 52, 2796.
      (d) Aitken, R. A. Sci. Synth. 2001, 10, 809.
      (e) Hu, Z.; Tian, R.; Zhao, K.; Liu, Y.; Duan, Z.; Mathey, F. Org. Lett. 2017, 19, 5004.

    5. [5]

      (a) Washington, M. P.; Gudimetla, V. B.; Laughlin, F. L.; Deligonul, N.; He, S.; Payton, J. L.; Protasiewicz, J. D. J. Am. Chem. Soc. 2010, 132, 4566.
      (b) Washington, M. P.; Payton, J. L.; Simpson, M. C.; Protasiewicz, J. D. Organometallics 2011, 30, 1975.
      (c) Laughlin, F. L.; Rheingold, A. L.; Deligonul, N.; Laughlin, B. J.; Smith, R. C.; Higham, L. J.; Protasiewicz, J. D. Dalton Trans. 2012, 41, 12016.
      (d) Laughlin, F. L.; Deligonul, N.; Rheingold, A. L.; Golen, J. A.; Laughlin, B. J.; Smith, R. C.; Protasiewicz, J. D. Organometallics 2013, 32, 7116.

    6. [6]

      (a) Ashe Ⅲ, A. J.; Fang, X. Chem. Commun. 1999, 14, 1283.
      (b) Worch, J. C.; Hellemann, E.; Pros, G.; Gayathri, C.; Pintauer, T.; Gil, R. R.; Noonan, K. J. Organometallics 2015, 34, 5366.
      (c) Qiu, Y.; Worch, J. C.; Chirdon, D. N.; Kaur, A.; Maurer, A. B.; Amsterdam, S.; Noonan, K. J. Chem. Eur. J. 2014, 20, 7746.
      (d) Issleib, K.; Vollmer, R. Tetrahedron Lett. 1980, 21, 3483.
      (e) Worch, J. C.; Hellemann, E.; Pros, G.; Gayathri, C.; Pintauer, T.; Gil, R. R.; Noonan, K. J. Organometallics 2015, 34, 5366.

    7. [7]

      (a) Zhang, L., Yu, W.; Liu, C.; Xu, Y.; Duan, Z.; Mathey, F. Organometallics 2015, 34, 5697.
      (b) Aluri, B. R.; Kindermann, M. K.; Jones, P. G.; Heinicke, J. Chem. Eur. J. 2008, 14, 4328.
      (c) Aluri, B. R.; Burck, S.; Gudat, D.; Niemeyer, M.; Holloczki, O.; Nyulaszi, L.; Heinicke, J. Chem. Eur. J. 2009, 15, 12263.

    8. [8]

      (a) Le Floch, P. Phosphorus-Carbon Heterocycl. Chem. 2001, 485.
      (b) Le Floch, P.; Mathey, F. J. Chem. Soc., Chem. Commun. 1993, 16, 1295.
      (c) Mao, Y.; Mathey, F. Chem. Eur. J. 2011, 17, 10745.

    9. [9]

      (a) Tabellion, F.; Peters, C.; Fischbeck, U.; Regitz, M.; Preuss, F. Chem. Eur. J. 2000, 6, 4558.
      (b) Tabellion, F.; Nachbauer, A.; Leininger, S.; Peters, C.; Preuss, F.; Regitz, M. Angew. Chem., Int. Ed. 1998, 37, 1233.
      (c) Böhm, D., Knoch, F.; Kummer, S.; Schmidt, U.; Zenneck, U. Angew. Chem., Int. Ed. 1995, 34, 198.
      (d) Kobayashi, Y.; Hamana, H.; Fujino, S.; Ohsawa, A.; Kumadaki, I. J. Am. Chem. Soc. 1980, 102, 252.
      (e) RKoner, A.; Pfeifer, G.; Kelemen, Z.; Schnakenburg, G.; Nyulászi, L.; Sasamori, T.; Streubel, R. Angew. Chem. 2017, 129, 9359.

    10. [10]

      (a) Märkl, G.; Matthes, D. Angew. Chem., Int. Ed. 1972, 11, 1019.
      (b) Märkl, G.; Dorfmeister, G. Tetrahedron Lett. 1987, 28, 1093.
      (b) Bourdieu, C.; Foucaud, A. Tetrahedron Lett. 1987, 28, 4673.
      (c) Märkl, G.; Dietl, S.; Ziegler, M. L.; Nuber, B. Angew. Chem., Int. Ed. 1988, 27, 389.
      (d) Appel, V. R.; Poppe, M. Angew. Chem. 1989, 101, 70.
      (e) Avarvari, N.; Le Floch, P.; Mathey, F. J. Am. Chem. Soc. 1996, 118, 11978.
      (f) Märkl, G.; Dorges, C. Angew. Chem. 1991, 103, 82.
      (g) Avarvari, N.; Floch, P. L.; Ricard, L.; Mathey, F. Organometallics 1997, 16, 4089.
      (h) Frison, G.; Sevin, A.; Avarvari, N.; Mathey, F.; Floch, P. L. J. Org. Chem. 1999, 64, 5524.

    11. [11]

      Becker, G. Z. Anorg. Allg. Chem. 1976, 423, 242.  doi: 10.1002/(ISSN)1521-3749

    12. [12]

      (a) Becker, G. Mundt, O. Z. Anorg. Allg. Chem. 1978, 443, 53.
      (b) Becker, G.; RUssler, M.; Uhl, W. Z. Anorg. Allg. Chem. 1981, 473, 7.

    13. [13]

      Issleib, K.; Schmidt, H.; Meyer, H. J. Organomet. Chem. 1978, 160, 47.  doi: 10.1016/S0022-328X(00)91197-5

    14. [14]

      Yam, M.; Tsang, C. W.; Gates, D. P. Inorg. Chem. 2004, 43, 3719.  doi: 10.1021/ic049796j

    15. [15]

      Klebach, T. C.; Lourens, R.; Bickelhaupt, F. J. Am. Chem. Soc. 1978, 100, 4886.  doi: 10.1021/ja00483a041

    16. [16]

      Issleib, K.; Schmidt, H.; Wirkner, C. Z. Anorg. Allg. Chem. 1981, 473, 85.  doi: 10.1002/(ISSN)1521-3749

    17. [17]

      Becker, G.; Uhl, W.; Wessely, H. J. Z. Anorg. Allg. Chem. 1981, 479, 41.  doi: 10.1002/(ISSN)1521-3749

    18. [18]

      (a) Becker, G.; Becker, W.; Mundt, O. Phosphorus Sulfur 1983, 14, 267.
      (b) Romanenko, V. D.; Ruban, A. V.; Chernega, A. N.; Povolotskii, M. I.; Antipin, M. Y.; Struchkov, Y. T.; Markovskii, L. N. Zh. Obsh. Khim. 1990, 59, 1718.
      (c) Romanenko, V. D.; Ruban, A. V.; Povolotskii, M. I.; Polyachenko, L. K.; Markovskii, L. N. Zh. Obsh. Khim. 1986, 56, 1186.

    19. [19]

      (a) Oehme, H.; Leissring, E.; Meyer, H. Tetrahedron Lett. 1980, 21, 1141.
      (b) Issleib, K.; Vollmer, R. Tetrahedron Lett. 1980, 21, 3483.

    20. [20]

      (a) Appel, R.; Casser, C.; Immenkeppel, M.; Knoch, F. Angew. Chem., Int. Ed. 1984, 23, 895.
      (b) Appel, R.; Immenkeppel, M. Z. Anorg. Allg. Chem. 1987, 553, 7.

    21. [21]

      Miyake, H.; Sasamori, T.; Tokitoh, N. Angew. Chem. 2012, 124, 3514.  doi: 10.1002/ange.v124.14

    22. [22]

      (a) Marinetti, A.; Mathey, F. Angew. Chem., Int. Ed. 1988, 27, 1382.
      (b) Le Floch, P.; Marinetti, A.; Ricard, L.; Mathey, F. J. Am. Chem. Soc. 1990, 112, 2407.
      (c) Le Floch, P.; Mathey, F. Synlett 1990, 171.
      (d) Marinetti, A.; Le Floch, P.; Mathey, F. Organometallics 1991, 10, 1190.

    23. [23]

      Esfandiarfard, K.; Arkhypchuk, A. I.; Orthaber, A.; Ott, S. Dalton Trans. 2016, 45, 2201.  doi: 10.1039/C5DT03686K

    24. [24]

      (a) Cummins, C. C.; Schrock, R. R.; Davis, W. M. Angew. Chem., Int. Ed. 1993, 32, 756.
      (b) Breen, T. L.; Stephan, D. W. J. Am. Chem. Soc. 1995, 117, 11914.
      (d) Masuda, J. D.; Jantunen, K. C.; Ozerov, O. V.; Noonan, K. J.; Gates, D. P.; Scott, B. L.; Kiplinger, J. L. J. Am. Chem. Soc. 2008, 130, 2408.

    25. [25]

      (a) Shah, S.; Protasiewicz, J. D. Chem. Commun. 1998, 1585.
      (b) Wang, H.; Zhao, W.; Zhou, Y.; Duan, Z.; Mathey, F. Eur. J. Inorg. Chem. 2011, 4585.

    26. [26]

      Wright, V. A.; Gates, D. P. Angew. Chem. 2002, 114, 2495.  doi: 10.1002/(ISSN)1521-3757

    27. [27]

      Wright, V. A.; Patrick, B. O.; Schneider, C.; Gates, D. P. J. Am. Chem. Soc. 2006, 128, 8836.  doi: 10.1021/ja060816l

    28. [28]

      Smith, R. C.; Protasiewicz, J. D. J. Am. Chem. Soc. 2004, 126, 2268.  doi: 10.1021/ja0394683

    29. [29]

      Wagner, O.; Maas, G.; Regitz, M. Angew. Chem. 1987, 99, 1328.  doi: 10.1002/(ISSN)1521-3757

    30. [30]

      Regitz, M.; Heydt, H.; Wagner, O.; Schnurr, W.; Ehle, M.; Hoffmann, J. Phosphorus, Sulfur Silicon Relat. Elem. 1990, 49, 341.
       

    31. [31]

      Sanchez, M.; Réau, R.; Marsden, C. J.; Regitz, M.; Bertrand, G. Chem. Eur. J. 1999, 5, 274.  doi: 10.1002/(ISSN)1521-3765

    32. [32]

      Hitchcock, P. B.; Maah, M. J.; Nixon, J. F. J. Chem. Soc., Chem. Commun. 1986, 737.

    33. [33]

      Binger, P.; Glaser, G.; Albus, S.; Krüger, C. Chem. Ber. 1995, 128, 1261.  doi: 10.1002/(ISSN)1099-0682

    34. [34]

      Heinemann, F. W.; Kummer, S.; Seiss-Brandl, U.; Zenneck, U. Organometallics 1999, 18, 2021.  doi: 10.1021/om980862x

    35. [35]

      Ito, S.; Sugiyama, H.; Yoshifuji, M. Chem. Commun. 2002, 1744.

    36. [36]

      (a) Heinicke, J.; Tzschach, A. Z. Chem. 1980, 20, 342.
      (b) Heinicke, J.; Tzschach, A. Phosphorus Sulfur 1985, 25, 345.
      (d) Tian, R.; Zhang, C.; Xu, Y.; Liu, C.; Duan, Z.; Mathey, F. Chem. Eur. J. 2017, 23, 13006.

    37. [37]

      Niaz, B.; Ghalib, M.; Jones, P. G.; Heinicke, J. W. Dalton Trans. 2013, 42, 9523.  doi: 10.1039/c3dt50981h

    38. [38]

      (a) Issleib, K.; Vollmer, R. Z. Anorg. Allg. Chem. 1981, 481, 22.
      (b) Bansal, R. K.; Gupta, N.; Heinicke, J.; Nikonov, G. N.; Saguitova, F.; Sharma, D. C. Synthesis 1999, 264.

    39. [39]

      (a) Aluri, B. R.; Niaz, B.; Kindermann, M. K.; Jones, P. G.; Heinicke, J. Dalton Trans. 2011, 40, 211.
      (b) Ghalib, M.; Niaz, B.; Jones, P. G.; Heinicke, J. W. Heteroat. Chem. 2013, 24, 452.
      (c) Heinicke, J.; Gupta, N.; Surana, A.; Peulecke, N.; Witt, B.; Steinhauser, K.; Jones, P. G. Tetrahedron 2001, 57, 9963.
      (d) Bansal, R. K.; Gupta, N.; Heinicke, J.; Nikonov, G. N.; Saguitova, F.; Sharma, D. C. Synthesis 1999, 264.

    40. [40]

      Huang, H.; Luo, H.; Tao, G.; Cai, W.; Cao, J.; Duan, Z.; Mathey, F. Org. Lett. 2018, 20, 1027.  doi: 10.1021/acs.orglett.7b03971

    41. [41]

      (a) Schmidpeter, A.; Willhalm, A. Angew. Chem., Int. Ed. 1984, 23, 903.
      (b) Märkl, G.; Trötsch, I. Angew. Chem., Int. Ed. 1984, 23, 901.
      (c) Rösch, W.; Regitz, M. Angew. Chem., Int. Ed. 1984, 96, 898.

    42. [42]

      (a) Chia, S. P.; Li, Y.; So, C. W. Organometallics 2013, 32, 5231.
      (b) Chapyshev, S. V.; Anisimov, V. M. Chem. Heterocycl. Compd. 1997, 33, 587.
      (c) Choong, S. L.; Nafady, A.; Stasch, A.; Bond, A. M.; Jones, C. Dalton Trans. 2013, 42, 7775.
      (d) Sklorz, J. A.; Hoof, S.; Sommer, M. G.; Weißer, F.; Weber, M.; Wiecko, J.; Müller, C. Organometallics 2014, 33, 511.
      (e) Takeda, H.; Ishitani, O. Coord. Chem. Rev., 2010, 254, 346.
      (f) Lowe-Ma, C. K.; Nissan, R. A.; Wilson, W. S. J. Org. Chem. 1990, 55, 3755
      (g) Sklorz, J. A.; Hoof, S.; Rades, N.; De Rycke, N.; Koenczoel, L.; Szieberth, D.; Mueller, C. Chem. Eur. J. 2015, 21, 11096.

    43. [43]

      (a) Chapyshev, S. V.; Bergsträsser, U.; Regitz, M. Khim. Geterotsikl. Soedin. 1996, 1, 67.
      (b) Märkl, G.; Troetsch-Schaller, I.; Hölzl, W. Tetrahedron Lett. 1988, 29, 785.
      (c) Yeung Lam Ko, Y. Y. C.; Carrié, R. J. Chem. Soc., Chem. Commun. 1984, 1640.
      (d) Bansal, R. K.; Gupta, N. Sci. Synth. 2014, 46, 754.
      (e) Sklorz, J. A.; Mueller, C. Eur. J. Inorg. Chem. 2016, 2016, 595.
      (f) Fuchs, E. P. O.; Hermesdorf, M.; Schnurr, W.; Rösch, W.; Heydt, H.; Regitz, M.; Binger, P J. Organomet. Chem. 1988, 338, 329.

    44. [44]

      Märkl, G. Angew. Chem. 1966, 78, 907.

    45. [45]

      (a) Märkl, G.; Lieb, F.; Merz, A. Angew. Chem. 1967, 79, 475.
      (b) Weemers, J. J.; van der Graaff, W. N.; Pidko, E. A.; Lutz, M.; Müller, C. Chem. Eur. J. 2013, 19, 8991.

    46. [46]

      Ashe Ⅲ, A. J.; Shu, P. J. Am. Chem. Soc. 1971, 93, 1804.  doi: 10.1021/ja00736a052

    47. [47]

      Avarvari, N.; Le Floch, P.; Mathey, F. J. Am. Chem. Soc. 1996, 118, 11978.  doi: 10.1021/ja962736v

    48. [48]

      Hunter, R. A.; Whitby, R. J.; Light, M. E.; Hursthouse, M. B. Tetrahedron Lett. 2004, 45, 7633.  doi: 10.1016/j.tetlet.2004.08.098

    49. [49]

      (a) Habicht, M. H.; Wossidlo, F.; Bens, T.; Pidko, E. A.; Müller, C. Chem. Eur. J. 2018, 24, 944.
      (b) Rösch, W.; Regitz, M. Z. Naturforsch. B 1986, 41, 931.
      (c) Wrackmeyer, B.; Klaus, U. Organomet. Chem. 1996, 520, 211.
      (d) Ko, Y. Y. Y. L.; Carrié, R. J. Chem. Soc., Chem. Commun. 1984, 1640.
      (e) Fink, J.; Rösch, W.; Vogelbacher, U. J.; Regitz, M. Angew. Chem. 1986, 98, 265.
      (f) Fink, J.; Rösch, W.; Vogelbacher, U. J.; Regitz, M. Angew. Chem., Int. Ed. 1986, 25, 280.
      (g) Blatter, K.; Rösch, W.; Vogelbacher, U. J.; Fink, J.; Regitz, M. Angew. Chem., Int. Ed. 1987, 26, 85.

    50. [50]

      Märkl, G.; Jin, G. Y.; Silbereisen, E. Angew. Chem., Int. Ed. 1982, 21, 370.

    51. [51]

      (a) Wang, H.; Li, C.; Geng, D.; Chen, H.; Duan, Z.; Mathey, F. Chem. Eur. J. 2010, 16, 10659.
      (b) Chen, H.; Li, J.; Wang, H.; Liu, H.; Duan, Z.; Mathey, F. Eur. J. Inorg. Chem. 2011, 1540.

    52. [52]

      Regitz, M.; Binger, P. Angew. Chem. 1988, 100, 1541.  doi: 10.1002/(ISSN)1521-3757

    53. [53]

      Mei, Y.; Wu, D. J.; Borger, J. E.; Grützmacher, H. Angew. Chem., Int. Ed. 2018, 57, 5512.  doi: 10.1002/anie.v57.19

    54. [54]

      (a) Nakajima, K.; Takata, S.; Sakata, K.; Nishibayashi, Y. Angew. Chem. 2015, 127, 7707.
      (b) Nakajima, K.; Liang, W.; Nishibayashi, Y. Org. Lett. 2016, 18, 5006.

    55. [55]

      Zhang, L.; Yang, F.; Tao, G.; Qiu, L.; Duan, Z.; Mathey, F. Eur. J. Inorg. Chem. 2017, 2355.

    56. [56]

      (a) Wang, L.; Zhang, L.; Shi, H.; Duan, Z.; Mathey, F. Synlett 2013, 24, 2006.
      (c) Wang, L.; Wang, Z.; Wang, Q.; Duan, Z.; Mathey, F. Dalton Trans. 2015, 44, 3717.
      (d) Huang, H.; Wei, Z.; Wang, M.; Duan, Z.; Mathey, F. Eur. J. Org. Chem. 2017, 5724.

    57. [57]

      (a) Märkl, G.; Matthes, D. Angew. Chem., Int. Ed. 1972, 11, 1019.
      (b) Märkl, G.; Dorfmeister, G. Tetrahedron Lett. 1987, 28, 1093.
      (c) Bourdieu, C.; Foucaud, A. Tetrahedron Lett. 1987, 28, 4673.
      (d) Markl, G.; Dietl, S.; Ziegler, M. L.; Nuber, B. Angew. Chem., Int. Ed. 1988, 27, 389.
      (e) Appel, V. R.; Poppe, M. Angew. Chem. 1989, 101, 70.

    58. [58]

      Huang, H.; Wei, Z.; Hou, J.; Wang, R.; Tao, G.; Wang, M.; Mathey, F. Eur. J. Org. Chem. 2018, 2018, 2863.  doi: 10.1002/ejoc.201800492

    59. [59]

      (a) Kobayashi, Y.; Kumadaki, I.; Ohsawa, A.; Hamana, H. Tetrahedron Lett. 1976, 17, 3715.
      (b) Kobayashi, Y.; Kumakaki, I.; Oshaea, A.; Hamana, H. Tetrahedron Lett. 1977, 10, 867.
      (c) Kobayashi, Y.; Hamana, H.; Fujino, S.; Ohsawa, A.; Kumadaki, I. J. Am. Chem. Soc. 1980, 102, 252.

    60. [60]

      Böhm, D.; Knoch, F.; Kummer, S.; Schmidt, U.; Zenneck, U. Angew. Chem., Int. Ed. 1995, 34, 198.  doi: 10.1002/(ISSN)1521-3773

    61. [61]

      (a) Hofmann, M. A., Heydt, H., Regitz, M. Synthesis 2001, 0463.
      (b) Hofmann, M. A.; Bergsträßer, U.; Reiß, G. J.; Nyulászi, L.; Regitz, M. Angew. Chem., Int. Ed. 2000, 39, 1261.

    62. [62]

      (a) Binger, P.; Stannek, J.; Gabor, B.; Mynott, R.; Bruckmann, J.; Krüger, C.; Leininger, S. Angew. Chem., Int. Ed. 1995, 34, 2227.
      (b) Tabellion, F.; Nachbauer, A.; Leininger, S.; Peters, C.; Preuss, F.; Regitz, M. Angew. Chem., Int. Ed. 1998, 37, 1233.
      (c) Tabellion, F.; Peters, C.; Fischbeck, U.; Regitz, M.; Preuss, F. Chem. Eur. J. 2000, 6, 4558.
      (d). Heydt, H. New Aspects in Phosphorus Chemistry Ⅱ, Springer, Berlin, Heidelberg, 2003, pp. 215~249.
      (e) Trincado, M.; Rosenthal, A. J.; Vogt, M.; Grützmacher, H. Eur. J. Inorg. Chem. 2014, 1599.

    63. [63]

      Koner, A.; Pfeifer, G.; Kelemen, Z.; Schnakenburg, G.; Nyulászi, L.; Sasamori, T.; Streubel, R. Angew. Chem., Int. Ed. 2017, 56, 9231.  doi: 10.1002/anie.201704070

    64. [64]

      Yruegas, S.; Barnard, J. H.; Al-Furaiji, K.; Dutton, J. L.; Wilson, D. J.; Martin, C. D. Organometallics 2018, 37, 1515.  doi: 10.1021/acs.organomet.8b00248

    65. [65]

      Minami, T.; Okamoto, H.; Ikeda, S.; Tanaka, R.; Ozawa, F.; Yoshifuji, M. Angew. Chem., Int. Ed. 2001, 40, 4501.  doi: 10.1002/1521-3773(20011203)40:23<4501::AID-ANIE4501>3.0.CO;2-K

    66. [66]

      Ozawa, F.; Yamamoto, S.; Kawagishi, S.; Hiraoka, M.; Ikeda, S.; Minami, T.; Yoshifuji, M. Chem. Lett. 2001, 30, 972.  doi: 10.1246/cl.2001.972

    67. [67]

      Ozawa, F.; Okamoto, H.; Kawagishi, S.; Yamamoto, S.; Minami, T.; Yoshifuji, M. J. Am. Chem. Soc. 2002, 124, 10968.  doi: 10.1021/ja0274406

    68. [68]

      Murakami, H.; Minami, T.; Ozawa, F. J. Org. Chem. 2004, 69, 4482.  doi: 10.1021/jo049732q

    69. [69]

      Chang, Y. H.; Nakajima, Y.; Ozawa, F. Organometallics 2013, 32, 2210.  doi: 10.1021/om4000743

    70. [70]

      Qiao, S.; Fu, G. C. J. Org. Chem. 1998, 63, 4168.  doi: 10.1021/jo980624b

    71. [71]

      Tanaka, K.; Fu, G. C. J. Org. Chem. 2001, 66, 8177.  doi: 10.1021/jo010792v

    72. [72]

      Shintani, R.; Fu, G. C. Org. Lett. 2002, 4, 3699.  doi: 10.1021/ol026651c

    73. [73]

      (a) Shintani, R.; Fu, G. C. Angew. Chem. 2003, 115, 4216.
      (b) Shintani, R.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 10778.

    74. [74]

      Knoch, F.; Kremer, F.; Schmidt, U.; Zenneck, U.; Le Floch, P.; Mathey, F. Organometallics 1996, 15, 2713.  doi: 10.1021/om950800w

    75. [75]

      Le Floch, P.; Knoch, F.; Kremer, F.; Mathey, F.; Scholz, J.; Scholz, W.; Zenneck, U. Eur. J. Inorg. Chem. 1998, 119.
       

    76. [76]

      DiMauro, E. F.; Kozlowski, M. C. J. Chem. Soc., Perkin Trans. 1 2002, 439.
       

    77. [77]

      de Vaumas, R.; Marinetti, A.; Mathey, F. J. Organomet. Chem. 1991, 413, 411.  doi: 10.1016/0022-328X(91)80066-S

    78. [78]

      Bauer, S.; Marinetti, A.; Ricard, L.; Mathey, F. Angew. Chem., Int. Ed. 1990, 29, 1166.  doi: 10.1002/(ISSN)1521-3773

    79. [79]

      (a) Schnurr, W.; Regitz, M. Tetrahedron Lett. 1989, 30, 395.
      (b) Yoshifuji, M.; Yoshimura, H.; Toyota, K. Chem. Lett. 1990, 19, 827.

    80. [80]

      (a) Bachrach, S. M. J. Org. Chem. 1993, 58, 541.
      (b) Appel, R.; Barth, V.; Halstenberg, M. Chem. Ber. 1982, 115, 1617.

    81. [81]

      Abbari, M.; Cosquer, P.; Tonnard, F.; Ko, Y. Y. C. Y. L.; Carrié, R. Tetrahedron 1991, 47, 71.  doi: 10.1016/0040-4020(91)80009-Q

    82. [82]

      Marinetti, A.; Ricard, L.; Mathey, F. Organometallics 1990, 9, 788.  doi: 10.1021/om00117a039

    83. [83]

      (a) Yoshifuji, M.; Toyota, K.; Inamoto, N. Tetrahedron Lett. 1985, 26, 1727.
      (b) Meriem, A.; Majoral, J. P.; Revel, M.; Navech, J. Tetrahedron Lett. 1983, 24, 1975.

    84. [84]

      Arduengo Ⅲ, A. J.; Carmalt, C. J.; Clyburne, J. A. C.; Cowley, A. H.; Pyati, R. Chem. Commun. 1997, 981.

    85. [85]

      Bates, J. I., Gates, D. P. Chem. Eur. J. 2012, 18, 1674.  doi: 10.1002/chem.v18.6

    86. [86]

      Marinetti, A.; Mathey, F. J. Chem. Soc. Chem. Commun. 1990, 153.

    87. [87]

      (a) Van Der Knaap, T. A.; Klebach, T. C.; Visser, F.; Lourens, R.; Bickelhaupt, F. Tetrahedron 1984, 40, 991.
      (b) Allspach, T.; Regitz, M.; Becker, G.; Becker, W. Synthesis 1986, 31.
      (c) Le Floch, P.; Mathey, F. Tetrahedron Lett. 1989, 30, 817.
      (d) Le Floch, P.; Ricard, L.; Mathey, F. Polyhedron 1990, 9, 991.
      (e) van der Knaap, T. A. Bickelhaupt, F. Tetrahedron 1983, 39, 3189.

    88. [88]

      Märkl, G.; Seidl, E.; Trötsch, I. Angew. Chem., Int. Ed. 1983, 22, 879.  doi: 10.1002/anie.198308791

    89. [89]

      Tsang, C. W.; Yam, M.; Gates, D. P. J. Am. Chem. Soc. 2003, 125, 1480.  doi: 10.1021/ja029120s

    90. [90]

      (a) Tsang, C. W.; Baharloo, B.; Riendl, D.; Yam, M.; Gates, D. P. Angew. Chem. 2004, 116, 5800.
      (b) Dugal-Tessier, J.; Serin, S. C.; Castillo-Contreras, E. B.; Conrad, E. D.; Dake, G. R.; Gates, D. P. Chem. Eur. J. 2012, 18, 6349.

    91. [91]

      Siu, P. W.; Serin, S. C.; Krummenacher, I.; Hey, T. W.; Gates, D. P. Angew. Chem. 2013, 125, 7105.  doi: 10.1002/ange.201301881

    92. [92]

      Longobardi, L. E.; Russell, C. A.; Green, M.; Townsend, N. S.; Wang, K.; Holmes, A. J.; Stephan, D. W. J. Am. Chem. Soc. 2014, 136, 13453.  doi: 10.1021/ja5077525

    93. [93]

      (a) Liu, L. L.; Zhou, J.; Cao, L. L.; Andrews, R.; Falconer, R. L.; Russell, C. A.; Stephan, D. W. J. Am. Chem. Soc. 2017, 140, 147.
      (b) Liu, L. L.; Zhou, J.; Andrews, R.; Stephan, D. W. J. Am. Chem. Soc. 2018, 140, 7466.

  • 加载中
    1. [1]

      Junyuan Zhang Zhiwei Miao . 有机磷杀虫剂的前世今生. University Chemistry, 2025, 40(6): 129-138. doi: 10.12461/PKU.DXHX202408118

    2. [2]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    3. [3]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    4. [4]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Shuai Yuan Yaofeng Yuan . Academician Chengye Yuan and Organic Phosphorus Chemistry. University Chemistry, 2025, 40(7): 393-400. doi: 10.12461/PKU.DXHX202409123

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    10. [10]

      Caiyun Jin Zexuan Wu Guopeng Li Zhan Luo Nian-Wu Li . 用于金属锂电池的磷腈基阻燃人工界面层. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-. doi: 10.1016/j.actphy.2025.100094

    11. [11]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    14. [14]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    15. [15]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    16. [16]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    17. [17]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    18. [18]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    19. [19]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    20. [20]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

Metrics
  • PDF Downloads(28)
  • Abstract views(1902)
  • HTML views(401)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return