Citation: Hu Yuefu, Cui Guiling, Huang Wencai, Yang Li, Qi Qingrong. Synthesis, Structural Characterization and Stability Evaluation of Metformin Hydrosulfide[J]. Chinese Journal of Organic Chemistry, ;2019, 39(5): 1503-1508. doi: 10.6023/cjoc201811031 shu

Synthesis, Structural Characterization and Stability Evaluation of Metformin Hydrosulfide

  • Corresponding author: Yang Li, yangli@scu.edu.cn Qi Qingrong, qiqingrong@scu.edu.cn
  • Received Date: 26 November 2018
    Revised Date: 26 December 2018
    Available Online: 8 May 2019

    Fund Project: the Construction of a Comprehensive Platform for the Innovation of Cardio-cerebrovascular Drugs in Shijiazhuang Pharmaceutical Group Company Limited 2013ZX09402103-1Project supported by the Construction of a Comprehensive Platform for the Innovation of Cardio-cerebrovascular Drugs in Shijiazhuang Pharmaceutical Group Company Limited (No. 2013ZX09402103-1)

Figures(2)

  • Hydrogen sulfide (H2S), the third gas signal molecule in mammals is studied more and more deeply, and great progress has been made on organic small molecule hydrogen sulfide donors. However, no hydrogen sulfide donor has been marketed as a drug yet. Metformin is a first-line drug for the treatment of diabetes. And some other biological activities such as anti-obesity, anticancer, and anti-aging have been disclosed in recent years. H2S donor has also shown promising prospect in antitumor, cardiovascular protection, anti-inflammation, ion channel regulation and anti-oxidation activities. In view of the potential of hydrogen sulfide and metformin for treatment of diseases, a novel hydrogen sulfide donor, metformin hydrosulfide, was thus designed. Till now, there is no report of this type of hydrogen sulfide donor. In our work, metformin hydrochloride was first basified to obtain metformin, followed by reaction with hydrogen sulfide to afford metformin hydrosulfide. The structure was fully characterized by 1H NMR, 13C NMR, elemental analysis and X-ray crystal. The content of hydrogen sulfide was determined by iodometry method, lead acetate test and methylene blue spectrophotometric method to be more than 96.00%. The metformin level was determined by high-pressure liquid chromatography (HPLC) to be more than 98.50%. The stability of metformin hydrosulfide was evaluated by iodometry method in solution and solid, respectively. The results indicate that metformin hydrosulfide is a promising new type of hydrogen sulfide donor which deserves further research and development.
  • 加载中
    1. [1]

      (a) Zheng, Y.; Yu, B.; De La Cruz, L. K.; Roy Choudhury, M.; Anifowose, A.; Wang, B. H. Med. Res. Rev. 2018, 38, 57.
      (b) Guo, W.; Cheng, Z. Y.; Zhu, Y. Z. Acta Pharmacol. Sin. 2013, 34, 1284.
      (c) Wallace, J. L.; Wang, R. Nat. Rev. Drug Discovery 2015, 14, 329.
      (d) Zhou, C.; Qiu, B.; Zeng, Y.; Chen, J. P.; Yu, T. J.; Li, Y. Chin. J. Org. Chem. 2017, 37, 92(in Chinese).
      (周婵, 邱波, 曾毅, 陈金平, 于天君, 李嫕, 有机化学, 2017, 37, 92.)

    2. [2]

      (a) Hellmich, M. R.; Szabo, C. In Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide, Vol. 230, Eds.: Moore, P. K.; Whiteman, M., Springer, Switzerland, 2015, p. 233.
      (b) Zhao, Y.; Kang, J. M.; Park, C. M.; Bagdon, P. E.; Peng, B.; Xian, M. Org. Lett. 2014, 16, 4536.
      (c) Gao, M.; Yu, F. B.; Chen, L. X. Prog. Chem. 2014, 6, 1065(in Chinese).
      (高敏, 于发标, 陈令新, 化学进展, 2014, 6, 1065.)

    3. [3]

      (a) Sparatore, A.; Santus, G.; Giustarini, D.; Rossi, R.; Del Soldato, P. Expert Rev. Clin. Pharmacol. 2011, 4, 109.
      (b) Zhang, X. Z.; Bian, J. S. ACS Chem Neurosci. 2014, 5, 876.
      (c) Zhao, Y.; Yang, C. T.; Organ, C.; Li, Z.; Bhushan, S. S.; Otsuka, H.; Pacheco, A.; Kang, J. M.; Aguilar, H. C.; Lefer, D. J.; Xian, M. J. Med. Chem. 2015, 58, 7501.
      (d) Kang, J. M.; Li, Z.; Organ, C. L.; Park, C. M.; Yang, C. T.; Pacheco, A.; Wang, D. F.; Lefer, D. J.; Xian, M. J. Am. Chem. Soc. 2016, 138, 6336.
      (e) He, P.; Tang, L. J.; Zhong, K. L.; Hou, S. H.; Yan, X. M. Chin. J. Org. Chem. 2017, 37, 423(in Chinese).
      (何平, 汤立军, 钟克利, 侯淑华, 燕小梅, 有机化学, 2017, 37, 423.)

    4. [4]

      (a) Benavides, G. A.; Squadrito, G. L.; Mills, R. W.; Patel, H. D.; Isbell, T. S.; Patel, R. P.; DarleyUsmar, V. M.; Doeller, J. E.; Kraus, D. W. Proc. Natl. Acad. Sci. 2007, 104, 17977.
      (b) Liang, D.; Wu, H.; Wong, M. W.; Huang, D. Org. Lett. 2015, 17, 4196.

    5. [5]

      (a) Zhao, Y.; Biggs, T. D.; Xian, M. Chem. Commun. (Camb.) 2014, 50, 11788.
      (b) Martelli, A.; Testai, L.; Citi, V.; Marino, A.; Pugliesi, I.; Barresi, E.; Nesi, G.; Rapposelli, S.; Taliani, S.; Da Settimo, F.; Breschi, M. C.; Calderone, V. ACS Med. Chem. Lett. 2013, 4, 904.

    6. [6]

      (a) Martelli, A.; Testai, L.; Citi, V.; Marino, A.; Bellagambi, F. G.; Ghimenti, S.; Breschi, M. C.; Calderone, V. Vasc. Pharmacol. 2014, 60, 32.
      (b) Citi, V.; Martelli, A.; Testai, L.; Marino, A.; Breschi, M. C.; Calderone, V. Planta Med. 2014, 80, 610.

    7. [7]

      Zhao, Y.; Wang, H.; Xian, M. J. Am. Chem. Soc. 2011, 133, 15.  doi: 10.1021/ja1085723

    8. [8]

      Ozturk, T.; Ertas, E.; Mert, O. Chem. Rev. 2007, 107, 5210.  doi: 10.1021/cr040650b

    9. [9]

      (a) Qandil, A. M. Int. J. Mol. Sci. 2012, 13, 17244.
      (b) Li, L.; Rossoni, G.; Sparatore, A.; Lee, L. C.; Del Soldato, P.; Moore, P. K. Free Radicals Biol. Med. 2007, 42, 706.

    10. [10]

      (a) Wallace, J. L.; Caliendo, G.; Santagada, V.; Cirino, G.; Fiorucci, S. Gastroenterology 2007, 132, 261.
      (b) Chattopadhyay, M.; Kodela, R.; Nath, N.; Dastagirzada, Y. M.; Velazquez-Martinez, C. A.; Boring, D.; Kashfi, K. Biochem. Pharmacol. 2012, 83, 715.

    11. [11]

      Lee, Z. W.; Zhou, J.; Chen, C. S.; Zhao, Y.; Tan, C. H.; Li, L.; Moore, P. K.; Deng, L. W. PLoS One 2011, 6, e21077.  doi: 10.1371/journal.pone.0021077

    12. [12]

      Devarie-Baez, N. O.; Bagdon, P. E.; Peng, B.; Zhao, Y.; Park, C.-M.; Xian, M. Org. Lett. 2013, 15, 2786.  doi: 10.1021/ol401118k

    13. [13]

      Fukushima, N.; Ieda, N.; Sasakura, K.; Nagano, T.; Hanaoka, K.; Suzuki, T.; Miyata, N.; Nakagawa, H. Chem. Commun. (Camb.) 2014, 50, 587.  doi: 10.1039/C3CC47421F

    14. [14]

      Fukushima, N.; Ieda, N.; Kawaguchi, M.; Sasakura, K.; Nagano, T.; Hanaoka, K.; Miyata, N.; Nakagawa, H. Bioorg. Med. Chem. Lett. 2015, 25, 175.  doi: 10.1016/j.bmcl.2014.11.084

    15. [15]

      Zhou, Z.; von Wantoch Rekowski, M.; Coletta, C.; Szabo, C.; Bucci, M.; Cirino, G.; Topouzis, S.; Papapetropoulos, A.; Giannis, A. Bioorg. Med. Chem. 2012, 20, 2675.  doi: 10.1016/j.bmc.2012.02.028

    16. [16]

      Zheng, Y.; Yu, B.; Ji, K.; Pan, Z.; Chittavong, V.; Wang, B. Angew. Chem., Int. Ed. 2016, 55, 4514.  doi: 10.1002/anie.201511244

    17. [17]

      Steiger, A. K.; Pardue, S.; Kevil, C. G.; Pluth, M. D. J. Am. Chem. Soc. 2016, 138, 7256.  doi: 10.1021/jacs.6b03780

    18. [18]

      Zheng, H.; Weng, L. L. CN 201710475428, 2017.

    19. [19]

      Achterhof, M.; Conaway, R. F.; Boord, C. E. J. Am. Chem. Soc. 1931, 53, 2682.  doi: 10.1021/ja01358a033

    20. [20]

      Romero, R.; Erez, O.; Huttemann, M.; Maymon, E.; Panaitescu, B.; Conde-Agudelo, A.; Pacora, P.; Yoon, B. H.; Grossman, L. I. Am. J. Obstet. Gynecol. 2017, 217, 282.  doi: 10.1016/j.ajog.2017.06.003

    21. [21]

      Ye, Y.; Li, X. J.; Zeng, Z. Z. Chin. J. Appl. Chem. 2005, 22, 1060(in Chinese).  doi: 10.3969/j.issn.1000-0518.2005.10.004

    22. [22]

      (a) Moghimi, A.; Khavassi, H.; Dashtestani, F.; Kordestani, D.; Jafari, A. E.; Maddah, B.; Moosavi, S. J. Mol. Struct. 2011, 996, 38.
      (b) Veisi, H.; Masti, R.; Kordestani, D.; Safaei, M.; Sahin, O. J. Mol. Catal. A: Chem. 2014, 385, 61.
      (c) Alizadeh, A.; Khodaei, M. M.; Abdi, G.; Kordestani, D. Bull. Korean Chem. Soc. 2012, 33, 3640.

    23. [23]

      Zhang, Z. L.; Bai, B.; Song, H. Chem. Eng. 2012, 26, 34(in Chinese).
       

    24. [24]

      Guan, X. C.; Peng, H. Y. J. Anyang Inst. Technol. 2012, 11, 25(in Chinese).
       

    25. [25]

      Koh, M.; Lee, J.-C.; Min, C.; Moon, A. Bioorg. Med. Chem. 2013, 21, 2305.  doi: 10.1016/j.bmc.2013.02.015

    26. [26]

      Zou, J. Y.; Feng, J. T. Sulphuric Acid Ind. 2013, 38(in Chinese).
       

  • 加载中
    1. [1]

      Xingyu Liao Xiangming Yi Kin Shing Chan . 追凶之路上的怪客——硫化氢. University Chemistry, 2025, 40(6): 172-176. doi: 10.12461/PKU.DXHX202408039

    2. [2]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    3. [3]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    4. [4]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    7. [7]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    8. [8]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    9. [9]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    10. [10]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    11. [11]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    12. [12]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    13. [13]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    14. [14]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    15. [15]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    16. [16]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      Linlin Wu Yonghua Zhou Zhongbei Li Liu Deng Younian Liu Limiao Chen Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018

    19. [19]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    20. [20]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

Metrics
  • PDF Downloads(22)
  • Abstract views(2477)
  • HTML views(425)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return