Citation: Hu Yuefu, Cui Guiling, Huang Wencai, Yang Li, Qi Qingrong. Synthesis, Structural Characterization and Stability Evaluation of Metformin Hydrosulfide[J]. Chinese Journal of Organic Chemistry, ;2019, 39(5): 1503-1508. doi: 10.6023/cjoc201811031 shu

Synthesis, Structural Characterization and Stability Evaluation of Metformin Hydrosulfide

  • Corresponding author: Yang Li, yangli@scu.edu.cn Qi Qingrong, qiqingrong@scu.edu.cn
  • Received Date: 26 November 2018
    Revised Date: 26 December 2018
    Available Online: 8 May 2019

    Fund Project: the Construction of a Comprehensive Platform for the Innovation of Cardio-cerebrovascular Drugs in Shijiazhuang Pharmaceutical Group Company Limited 2013ZX09402103-1Project supported by the Construction of a Comprehensive Platform for the Innovation of Cardio-cerebrovascular Drugs in Shijiazhuang Pharmaceutical Group Company Limited (No. 2013ZX09402103-1)

Figures(2)

  • Hydrogen sulfide (H2S), the third gas signal molecule in mammals is studied more and more deeply, and great progress has been made on organic small molecule hydrogen sulfide donors. However, no hydrogen sulfide donor has been marketed as a drug yet. Metformin is a first-line drug for the treatment of diabetes. And some other biological activities such as anti-obesity, anticancer, and anti-aging have been disclosed in recent years. H2S donor has also shown promising prospect in antitumor, cardiovascular protection, anti-inflammation, ion channel regulation and anti-oxidation activities. In view of the potential of hydrogen sulfide and metformin for treatment of diseases, a novel hydrogen sulfide donor, metformin hydrosulfide, was thus designed. Till now, there is no report of this type of hydrogen sulfide donor. In our work, metformin hydrochloride was first basified to obtain metformin, followed by reaction with hydrogen sulfide to afford metformin hydrosulfide. The structure was fully characterized by 1H NMR, 13C NMR, elemental analysis and X-ray crystal. The content of hydrogen sulfide was determined by iodometry method, lead acetate test and methylene blue spectrophotometric method to be more than 96.00%. The metformin level was determined by high-pressure liquid chromatography (HPLC) to be more than 98.50%. The stability of metformin hydrosulfide was evaluated by iodometry method in solution and solid, respectively. The results indicate that metformin hydrosulfide is a promising new type of hydrogen sulfide donor which deserves further research and development.
  • 加载中
    1. [1]

      (a) Zheng, Y.; Yu, B.; De La Cruz, L. K.; Roy Choudhury, M.; Anifowose, A.; Wang, B. H. Med. Res. Rev. 2018, 38, 57.
      (b) Guo, W.; Cheng, Z. Y.; Zhu, Y. Z. Acta Pharmacol. Sin. 2013, 34, 1284.
      (c) Wallace, J. L.; Wang, R. Nat. Rev. Drug Discovery 2015, 14, 329.
      (d) Zhou, C.; Qiu, B.; Zeng, Y.; Chen, J. P.; Yu, T. J.; Li, Y. Chin. J. Org. Chem. 2017, 37, 92(in Chinese).
      (周婵, 邱波, 曾毅, 陈金平, 于天君, 李嫕, 有机化学, 2017, 37, 92.)

    2. [2]

      (a) Hellmich, M. R.; Szabo, C. In Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide, Vol. 230, Eds.: Moore, P. K.; Whiteman, M., Springer, Switzerland, 2015, p. 233.
      (b) Zhao, Y.; Kang, J. M.; Park, C. M.; Bagdon, P. E.; Peng, B.; Xian, M. Org. Lett. 2014, 16, 4536.
      (c) Gao, M.; Yu, F. B.; Chen, L. X. Prog. Chem. 2014, 6, 1065(in Chinese).
      (高敏, 于发标, 陈令新, 化学进展, 2014, 6, 1065.)

    3. [3]

      (a) Sparatore, A.; Santus, G.; Giustarini, D.; Rossi, R.; Del Soldato, P. Expert Rev. Clin. Pharmacol. 2011, 4, 109.
      (b) Zhang, X. Z.; Bian, J. S. ACS Chem Neurosci. 2014, 5, 876.
      (c) Zhao, Y.; Yang, C. T.; Organ, C.; Li, Z.; Bhushan, S. S.; Otsuka, H.; Pacheco, A.; Kang, J. M.; Aguilar, H. C.; Lefer, D. J.; Xian, M. J. Med. Chem. 2015, 58, 7501.
      (d) Kang, J. M.; Li, Z.; Organ, C. L.; Park, C. M.; Yang, C. T.; Pacheco, A.; Wang, D. F.; Lefer, D. J.; Xian, M. J. Am. Chem. Soc. 2016, 138, 6336.
      (e) He, P.; Tang, L. J.; Zhong, K. L.; Hou, S. H.; Yan, X. M. Chin. J. Org. Chem. 2017, 37, 423(in Chinese).
      (何平, 汤立军, 钟克利, 侯淑华, 燕小梅, 有机化学, 2017, 37, 423.)

    4. [4]

      (a) Benavides, G. A.; Squadrito, G. L.; Mills, R. W.; Patel, H. D.; Isbell, T. S.; Patel, R. P.; DarleyUsmar, V. M.; Doeller, J. E.; Kraus, D. W. Proc. Natl. Acad. Sci. 2007, 104, 17977.
      (b) Liang, D.; Wu, H.; Wong, M. W.; Huang, D. Org. Lett. 2015, 17, 4196.

    5. [5]

      (a) Zhao, Y.; Biggs, T. D.; Xian, M. Chem. Commun. (Camb.) 2014, 50, 11788.
      (b) Martelli, A.; Testai, L.; Citi, V.; Marino, A.; Pugliesi, I.; Barresi, E.; Nesi, G.; Rapposelli, S.; Taliani, S.; Da Settimo, F.; Breschi, M. C.; Calderone, V. ACS Med. Chem. Lett. 2013, 4, 904.

    6. [6]

      (a) Martelli, A.; Testai, L.; Citi, V.; Marino, A.; Bellagambi, F. G.; Ghimenti, S.; Breschi, M. C.; Calderone, V. Vasc. Pharmacol. 2014, 60, 32.
      (b) Citi, V.; Martelli, A.; Testai, L.; Marino, A.; Breschi, M. C.; Calderone, V. Planta Med. 2014, 80, 610.

    7. [7]

      Zhao, Y.; Wang, H.; Xian, M. J. Am. Chem. Soc. 2011, 133, 15.  doi: 10.1021/ja1085723

    8. [8]

      Ozturk, T.; Ertas, E.; Mert, O. Chem. Rev. 2007, 107, 5210.  doi: 10.1021/cr040650b

    9. [9]

      (a) Qandil, A. M. Int. J. Mol. Sci. 2012, 13, 17244.
      (b) Li, L.; Rossoni, G.; Sparatore, A.; Lee, L. C.; Del Soldato, P.; Moore, P. K. Free Radicals Biol. Med. 2007, 42, 706.

    10. [10]

      (a) Wallace, J. L.; Caliendo, G.; Santagada, V.; Cirino, G.; Fiorucci, S. Gastroenterology 2007, 132, 261.
      (b) Chattopadhyay, M.; Kodela, R.; Nath, N.; Dastagirzada, Y. M.; Velazquez-Martinez, C. A.; Boring, D.; Kashfi, K. Biochem. Pharmacol. 2012, 83, 715.

    11. [11]

      Lee, Z. W.; Zhou, J.; Chen, C. S.; Zhao, Y.; Tan, C. H.; Li, L.; Moore, P. K.; Deng, L. W. PLoS One 2011, 6, e21077.  doi: 10.1371/journal.pone.0021077

    12. [12]

      Devarie-Baez, N. O.; Bagdon, P. E.; Peng, B.; Zhao, Y.; Park, C.-M.; Xian, M. Org. Lett. 2013, 15, 2786.  doi: 10.1021/ol401118k

    13. [13]

      Fukushima, N.; Ieda, N.; Sasakura, K.; Nagano, T.; Hanaoka, K.; Suzuki, T.; Miyata, N.; Nakagawa, H. Chem. Commun. (Camb.) 2014, 50, 587.  doi: 10.1039/C3CC47421F

    14. [14]

      Fukushima, N.; Ieda, N.; Kawaguchi, M.; Sasakura, K.; Nagano, T.; Hanaoka, K.; Miyata, N.; Nakagawa, H. Bioorg. Med. Chem. Lett. 2015, 25, 175.  doi: 10.1016/j.bmcl.2014.11.084

    15. [15]

      Zhou, Z.; von Wantoch Rekowski, M.; Coletta, C.; Szabo, C.; Bucci, M.; Cirino, G.; Topouzis, S.; Papapetropoulos, A.; Giannis, A. Bioorg. Med. Chem. 2012, 20, 2675.  doi: 10.1016/j.bmc.2012.02.028

    16. [16]

      Zheng, Y.; Yu, B.; Ji, K.; Pan, Z.; Chittavong, V.; Wang, B. Angew. Chem., Int. Ed. 2016, 55, 4514.  doi: 10.1002/anie.201511244

    17. [17]

      Steiger, A. K.; Pardue, S.; Kevil, C. G.; Pluth, M. D. J. Am. Chem. Soc. 2016, 138, 7256.  doi: 10.1021/jacs.6b03780

    18. [18]

      Zheng, H.; Weng, L. L. CN 201710475428, 2017.

    19. [19]

      Achterhof, M.; Conaway, R. F.; Boord, C. E. J. Am. Chem. Soc. 1931, 53, 2682.  doi: 10.1021/ja01358a033

    20. [20]

      Romero, R.; Erez, O.; Huttemann, M.; Maymon, E.; Panaitescu, B.; Conde-Agudelo, A.; Pacora, P.; Yoon, B. H.; Grossman, L. I. Am. J. Obstet. Gynecol. 2017, 217, 282.  doi: 10.1016/j.ajog.2017.06.003

    21. [21]

      Ye, Y.; Li, X. J.; Zeng, Z. Z. Chin. J. Appl. Chem. 2005, 22, 1060(in Chinese).  doi: 10.3969/j.issn.1000-0518.2005.10.004

    22. [22]

      (a) Moghimi, A.; Khavassi, H.; Dashtestani, F.; Kordestani, D.; Jafari, A. E.; Maddah, B.; Moosavi, S. J. Mol. Struct. 2011, 996, 38.
      (b) Veisi, H.; Masti, R.; Kordestani, D.; Safaei, M.; Sahin, O. J. Mol. Catal. A: Chem. 2014, 385, 61.
      (c) Alizadeh, A.; Khodaei, M. M.; Abdi, G.; Kordestani, D. Bull. Korean Chem. Soc. 2012, 33, 3640.

    23. [23]

      Zhang, Z. L.; Bai, B.; Song, H. Chem. Eng. 2012, 26, 34(in Chinese).
       

    24. [24]

      Guan, X. C.; Peng, H. Y. J. Anyang Inst. Technol. 2012, 11, 25(in Chinese).
       

    25. [25]

      Koh, M.; Lee, J.-C.; Min, C.; Moon, A. Bioorg. Med. Chem. 2013, 21, 2305.  doi: 10.1016/j.bmc.2013.02.015

    26. [26]

      Zou, J. Y.; Feng, J. T. Sulphuric Acid Ind. 2013, 38(in Chinese).
       

  • 加载中
    1. [1]

      Xingyu Liao Xiangming Yi Kin Shing Chan . 追凶之路上的怪客——硫化氢. University Chemistry, 2025, 40(6): 172-176. doi: 10.12461/PKU.DXHX202408039

    2. [2]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    3. [3]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    6. [6]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    7. [7]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    8. [8]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    10. [10]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    11. [11]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    12. [12]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    13. [13]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    14. [14]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    15. [15]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    16. [16]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    17. [17]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    18. [18]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    19. [19]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    20. [20]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

Metrics
  • PDF Downloads(19)
  • Abstract views(2015)
  • HTML views(325)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return