Citation: Xue Qi, Bi Fuqiang, Zhang Jiarong, Zhang Junlin, Wang Bozhou, Zhang Shengyong. Advances in the Synthesis and Properties of the Isofurazan Energetic Compounds[J]. Chinese Journal of Organic Chemistry, ;2019, 39(5): 1244-1262. doi: 10.6023/cjoc201811029 shu

Advances in the Synthesis and Properties of the Isofurazan Energetic Compounds

  • Corresponding author: Wang Bozhou, wbz600@163.com Zhang Shengyong, syzhang@fmmu.edu.cn
  • Received Date: 23 November 2018
    Revised Date: 13 January 2019
    Available Online: 31 May 2019

    Fund Project: the National Natural Science Foundation of China 21243007Project supported by the National Natural Science Foundation of China (No. 21243007)

Figures(47)

  • Isofurazan is composed of 1, 3, 4-oxadiazole and 1, 2, 4-oxadiazole, and the isofurazan compounds have gained considerable prominence as energetic compounds. This review focues on the two major classes of isofurazan energetic compounds and their energetic derivatives. The cyclization methods and reaction mechanism of isofurazans are presented. Several energetic compounds of isofurazans with excellent performances are highlighted, and their main physicochemical properties and detonation performances and their development prospect are discussed.
  • 加载中
    1. [1]

      Zhang, J. H.; Zhang, Q. H.; Thao, T. V.; Parrish, D. A.; Shreeve, J. M. J. Am. Chem. Soc. 2015, 137, 1697.  doi: 10.1021/ja5126275

    2. [2]

      Zhang, J. H.; Shreeve, J. M. J. Phys. Chem. C 2015, 119, 12887.

    3. [3]

      Zhang, J. H.; Shreeve, J. M. J. Am. Chem. Soc. 2014, 136, 4437.  doi: 10.1021/ja501176q

    4. [4]

      Klapötke, T. M.; Krumm, B.; Scherr, M.; Haiges, R.; Christe, K. O. Angew. Chem., Int. Ed. 2007, 46, 8686.  doi: 10.1002/anie.v46:45

    5. [5]

      Joo, Y. H.; Twamley, B.; Garg, S.; Shreeve, J. M. Angew. Chem., Int. Ed. 2008, 47, 6263.  doi: 10.1002/anie.v47:33

    6. [6]

      Zhang, J. R.; Bi, F. Q.; Lian, P.; Zhang, J. L.; Wang, B. Z. Chin. J. Org. Chem. 2016, 36, 1197 (in Chinese).

    7. [7]

      Klapötke, T. M.; Mayr, N.; Stierstorfer, J.; Weyrauther, M. Chem. Eur. J. 2014, 20, 1410.  doi: 10.1002/chem.v20.5

    8. [8]

      Thottempudi, V.; Yin, P.; Zhang, J. H.; Parrish, D. A.; Shreeve, J. M. Chem. Eur. J. 2014, 20, 542.  doi: 10.1002/chem.v20.2

    9. [9]

      Veauthier, J. M.; Chavez, D. E.; Tappan, B. C.; Parrish, D. A. J. Energy Mater. 2010, 28, 229.  doi: 10.1080/07370651003601769

    10. [10]

      He, J. X.; Lu, Y. H.; Lei, Q.; Cao Y. L. Chin. J. Explos. Propellants 2011, 34, 9 (in Chinese).

    11. [11]

      Sheremetev, A. B.; Ivanova, E. A.; Spiridonova, N. P.; Melnikova S. F.; Tselinsky I. V.; Suponitsky K. Y.; Antipin, M. Y. J. Heterocycl. Chem.

    12. [12]

      Lim, C. H.; Kim, T. K.; Kim, K. H.; Chung, K. H.; Kim, J. S. Bull. Korean Chem. Soc. 2010, 31, 1400.  doi: 10.5012/bkcs.2010.31.5.1400

    13. [13]

      Zhang, J. R.; Bi, F. Q.; Lian, P.; Zhang, J. L.; Wang, B. Z. Chin. J. Org. Chem. 2017, 37, 2736 (in Chinese).
       

    14. [14]

      Sheremetev, A. B.; Kharitonova, O. V.; Mantseva, E. V.; Kulagina, V. O.; Shatunova, E. V.; Aleksandrova, N. S.; Mel'nikova, T. M.; Ivanova, E. A.; Dmitriev, D. E.; Eman, V.; Yundin, I. L.; Kuz' min, V. S.; Strelenko, Y. A.; Novikova, T. S.; Lebedev, O. V.; Khmel'nitskii, L. I. Russ J. Org. Chem. 1999, 35, 1525.

    15. [15]

      Ge, Z. X.; Lai, W. P.; Lian, P.; Wang, B. Z.; Xue, Y. Q. Chin. J. Explos. Propellants 2007, 30, 5 (in Chinese).

    16. [16]

      Sun, Q.; Shen, C.; Li, X.; Lin, Q. H.; Lu, M. J. Mater. Chem. A 2017, 5, 11063.  doi: 10.1039/C7TA02209C

    17. [17]

      Fu, Z. D.; Su, R.; Wang, Y.; Wang, Y. F.; Zeng, W.; Xiao, N.; Wu, Y. K.; Zhou, Z. M.; Chen, J.; Chen, F. X. Chem.-Eur. J. 2012, 18, 1886.  doi: 10.1002/chem.201103159

    18. [18]

      Korkin, A. A.; Bartlett, R. J. J. Am. Chem. Soc. 1996, 118, 12244.  doi: 10.1021/ja962744b

    19. [19]

      Kamlet, M. J.; Jacobs, S. J. J. Chem. Phys. 1968, 48, 23.  doi: 10.1063/1.1667908

    20. [20]

      Qu, Y. Y.; Zeng, Q.; Wang, J.; Ma, Q.; Li, H. Z.; Li, H. N.; Yang, G. C. Chem.-Eur. J. 2016, 22, 12527.  doi: 10.1002/chem.v22.35

    21. [21]

      Klapötke, T. M.; Witkowski, T. G. ChemPlusChem 2016, 81, 357.  doi: 10.1002/cplu.201600078

    22. [22]

      Johnson, E. C.; Sabatini, J. J.; Chavez, D. E.; Sausa, R. C.; Byrd, E. F. C.; Wingard, L. A.; Guzmàn, P. E. Org. Process Res. Dev. 2018, 22, 736.  doi: 10.1021/acs.oprd.8b00076

    23. [23]

      Chavez, D.; Klapötke, T. M.; Parrish, D.; Piercey, D. G.; Stierstorfer, J. Propellants Explos. Pyrotech. 2014, 39, 641.  doi: 10.1002/prep.201300135

    24. [24]

      Yu, Q.; Cheng, G. B.; Ju, X. H.; Lu, C. X.; Lin, Q. H.; Yang. H. W. New J. Chem. 2017, 41, 1202.  doi: 10.1039/C6NJ03333D

    25. [25]

      Tamura, M.; Ise, Y.; Okajima Y.; Nishiwaki, N.; Ariga, M. Synthesis 2006, 3453.

    26. [26]

      Tsiulin, P. A.; Sosnina, V. V.; Krasovskaya, G. G.; Danilova, A. S.; Baikov, S. V.; Kofanov, E. R. Russ. J. Org. Chem. 2011, 47, 1874.  doi: 10.1134/S1070428011120153

    27. [27]

      Eloy, F.; Lenaers, R. Chem. Rev. 1962, 62, 155.  doi: 10.1021/cr60216a003

    28. [28]

      Tiemann, F.; Kruger, P. Chem. Ber. 1884, 17, 1658.

    29. [29]

      Ooi, N. S.; Wilson, D. A. J. Chem. Soc., Perkin Trans. 2 1980, 1792.

    30. [30]

      Chiou, S. S.; Shine, H. H. J. Heterocycl. Chem. 1989, 26, 125.  doi: 10.1002/jhet.v26:1

    31. [31]

      Gangloff, R. A.; Litvak, J; Shelton, E. J.; Sperandio, D.; Wang, V. R.; Rice, K. D. Tetrahedron Lett. 2001, 42, 1441.  doi: 10.1016/S0040-4039(00)02288-7

    32. [32]

      Lukin, K.; Kishore, V. J. Heterocycl. Chem. 2014, 51, 256.  doi: 10.1002/jhet.1689

    33. [33]

      Otaka, H.; Ikeda, J.; Tanaka, D.; Tobe, M. Tetrahedron Lett. 2014, 55, 979.  doi: 10.1016/j.tetlet.2013.12.016

    34. [34]

      Kaboudin, B.; Navaee, M. Heterocycles 2003, 60, 2287.  doi: 10.3987/COM-03-9769

    35. [35]

      Kiseleva, V. V.; Gakh, A. A.; Fainzil'berg, A. A. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1991, 100, 1888.

    36. [36]

      Huang, X. C.; Guo, T.; Wang, Z. J.; Liu, M.; Qiu, S. J.; Yao, B. J.; Li, H. L.; Jiang, J.; Tang, W.; Lv, Y. D.; Zhang, Y.; Chen, Z. Q.; Shi, Q.; Zheng, X. D. CN 106632124, 2017.

    37. [37]

      Huang, X. C.; Wang, Z. J.; Guo, T.; Qin, M. N.; Liu, M.; Qiu, S. Chin. J. Energ. Mater. 2017, 25, 603 (in Chinese).  doi: 10.11943/j.issn.1006-9941.2017.07.012

    38. [38]

      Kettner, M. A.; Karaghiosoff, K; Klapötke, T. M.; Sućeska, M.; Wunder, S. Chem.-Eur. J. 2014, 20, 7622.  doi: 10.1002/chem.201402291

    39. [39]

      Kettner, M. A.; Klapötke, T. M. Chem. Commun. 2014, 50, 2268.  doi: 10.1039/C3CC49879D

    40. [40]

      Gregory, G. I.; Warburton, W. K.; Seale, P. W. DE 2224338, 1972.

    41. [41]

      Pagoria, P. F.; Zhang, M. X.; Zuckerman, N. B.; DeHope, A. J.; Parrish, D. A. Chem. Heterocycl. Compd. 2017, 53, 760.  doi: 10.1007/s10593-017-2122-9

    42. [42]

      Dolbier, W. R.; Burkholder, C. R.; Médebielle, M. J. Fluorine Chem. 1999, 95, 127.  doi: 10.1016/S0022-1139(99)00007-X

    43. [43]

      Neves Filho, R. A. W.; Silva-Alves, D. C. B.; Anjos, J. V. D.; Srivastava, R. M. Synth. Commum. 2013, 43, 2596.  doi: 10.1080/00397911.2012.724757

    44. [44]

      Zhang C. J. Mol. Struc. Theochem 2006, 795, 77

    45. [45]

      Dippold, A. A.; Izsák, D.; Klapötke, T. M. Chem. Eur. J. 2013, 19, 12042.  doi: 10.1002/chem.201301339

    46. [46]

      Tsyshevsky, R.; Pagoria, P.; Zhang, M. X.; Racoveanu, A.; Parrish, D. A.; Smirnov, A. S.; Kuklja. M. M. J. Phys. Chem. C 2017, 121, 23853.  doi: 10.1021/acs.jpcc.7b07584

    47. [47]

      Tarasenko, M.; Duderin, N.; Sharonova, T.; Baykov, S.; Shetnev, A.; Smirnov. V. A. Tetrahedron Lett. 2017, 58, 3672.  doi: 10.1016/j.tetlet.2017.08.020

    48. [48]

      Tadikonda, R.; Nakka, M.; Gajula, M. B.; Rayavarapu, S.; Gollamudi, P. R.; Vidavalur, S. Synth. Commum. 2014, 44, 1978.  doi: 10.1080/00397911.2014.883633

    49. [49]

      Klapçtke, T. M.; Piercey, D. G. Inorg. Chem. 2011, 50, 2732.  doi: 10.1021/ic200071q

    50. [50]

      Li, Y. C.; Qi, C.; Li, S. H.; Zhang, H. J.; Sun, C. H.; Yu, Y. Z.; Pang, S. P. J. Am. Chem. Soc. 2010, 132, 12172.  doi: 10.1021/ja103525v

    51. [51]

      Yin, P.; Parrish, D. A.; Shreeve, J. M. Chem.-Eur. J. 2014, 20, 6707.  doi: 10.1002/chem.v20.22

    52. [52]

      Shaposhnikov, S. D.; Korobov, N. V.; Sergievskii, A. V.; Pirogov, S. V.; Mel'nikova, S. F.; Tselinskii, I. V. Russ. J. Org. Chem. 2002, 38, 1351.  doi: 10.1023/A:1021668216426

    53. [53]

      Andrianov, V. G.; Semenikhina, V. G.; Eremeev, A. V. J. Heterocycl. Compd. 1994, 30, 4.

    54. [54]

      Yan. C; Wang, K. C.; Liu, T. L.; Yang, H. W.; Cheng, G. B.; Zhang, Q. H. Dalton Trans. 2017, 46, 14210.  doi: 10.1039/C7DT03320F

    55. [55]

      Dimsdale, M. J. J. Heterocycl. Chem. 1981, 18, 37.  doi: 10.1002/jhet.v18:1

    56. [56]

      Zhao, G.; He, C. L.; Yin, P.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. J. Am. Chem. Soc. 2018, 140, 3560.  doi: 10.1021/jacs.8b01260

    57. [57]

      Shaposhnikov, S. D.; Korobov, N. V.; Sergievskii, A. V.; Pirogov, S. V.; Mel nikova, S. F.; Tselinskii, I. V. Russ. J. Org. Chem. 2001, 38, 1351.

    58. [58]

      Wei, H.; He, C. L.; Zhang, J. H.; Shreeve, J. M. Angew. Chem., Int. Ed. 2015, 54, 9367.  doi: 10.1002/anie.201503532

    59. [59]

      Wang, Q.; Shao, Y. L.; Lu, M. Cryst. Growth Des. 2018, 18, 6150.  doi: 10.1021/acs.cgd.8b01016

    60. [60]

      Yarovenko, V. N.; Taralashvili, V. K.; Zavarzin, I. V.; Krayushkin, M. M. Tetrahedron 1990, 46, 3941.  doi: 10.1016/S0040-4020(01)90529-0

    61. [61]

      Augustine, J. K.; Akabote, V.; Hegde, S. G.; Alagarsamy, P. J. Org. Chem. 2009, 74, 5640.  doi: 10.1021/jo900818h

    62. [62]

      Huffman, K. R.; Schaefer, F. C. Org. Chem. 1963, 28, 1816.  doi: 10.1021/jo01042a018

    63. [63]

      Huttunen, K. M.; Leppänen, J.; Kemppainen E.; Palonen, P.; Rautio, J.; Järvinen, T.; Vepsäläinen, J. Synthesis 2008, 3619.

    64. [64]

      Thottempudi, V.; Zhang, J. H.; Hea, C. L.; Shreeve, J. M. RSC Adv. 2014, 4, 50361.  doi: 10.1039/C4RA10821C

    65. [65]

      Yuan, Y. B.; Nie, J.; Wang, S. J.; Zhang, Z. B. Chin. J. Org. Chem. 2005, 25, 394 (in Chinese).  doi: 10.3321/j.issn:0253-2786.2005.04.006
       

    66. [66]

      Pang, F. Q.; Wang, G. L.; Lu, T.; Fan, G. J.; Chen, F. X. New J. Chem. 2018, 42, 4036.  doi: 10.1039/C7NJ03548A

    67. [67]

      Tang, Y. X.; Gao, H. X.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. Angew. Chem., Int. Ed. 2016, 55, 1147.  doi: 10.1002/anie.201509985

    68. [68]

      Yong, T. G.; Lin, M. Z.; Fu, Q. P.; Xiu, J. Q.; Jing, L. H.; Chen, F. X. Chin. Chem. Lett. 2016, 27, 433.  doi: 10.1016/j.cclet.2015.12.008

    69. [69]

      Wang, G. L.; Lu, T.; Fan, G. J.; Li, C. Q.; Yin, H. Q.; Chen, F. X. Chem-Asian J. 2018, 13, 3718.  doi: 10.1002/asia.v13.23

    70. [70]

      Vroom, A. H.; Winkler, C. A. Can. J. Res. 1950, 28B, 701.  doi: 10.1139/cjr50b-085

    71. [71]

      Maycock, J. N.; Verneker, V. R.; Lochte, W. Phys. Status Solidi B 1969, 35, 849.  doi: 10.1002/(ISSN)1521-3951

    72. [72]

      Hermann, T. S.; Karaghiosoff, K, ; Klapötke, K. M.; Stierstorfer, J. Chem.-Eur. J. 2017, 23, 12087.  doi: 10.1002/chem.201702191

    73. [73]

      Zhang, W. Q.; Zhang, J. H.; Deng, M. C.; Qi, X. J.; Nie, F.; Zhang, Q. H. Nat. Commun. 2017, 18, 1..

    74. [74]

      Tang, Y. X.; He, C. L.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. J. Mater. Chem. A 2015, 3, 23143.  doi: 10.1039/C5TA06898C

    75. [75]

      Fang, T.; Tan, Q. T.; Ding, Z. W.; Liu, B. X.; Xu, B. Org. Lett. 2014, 16, 2342.  doi: 10.1021/ol5006449

    76. [76]

      Si, Z. J.; Li, J.; Li, B.; Zhao, F. F.; Liu, S. Y.; Li, W. L. Inorg. Chem. 2007, 46, 6155.  doi: 10.1021/ic061645o

    77. [77]

      Dufau, L.; Ressurreição, A. S. M.; Fanelli, R.; Kihal, N.; Vidu, A.; Milcent, T.; Soulier, J. L.; Rodrigo, J.; Desvergne, A.; Leblanc, K.; Bernadat, G.; Crousse, B.; Ravaux, M. R.; Ongeri, S. J. Med. Chem. 2012, 55, 6762.  doi: 10.1021/jm300181j

    78. [78]

      Balicki, R.; Nantka-Namirski, P. Acta Pol. Pharm. 1988, 45, 1.

    79. [79]

      Saudi, M. N. S.; El-Semary, M. M. A.; Elbayaa, R. Y.; Jaeda, M. I.; Eissa, M. M.; Amer, E. I.; Baddour, N. M. Med. Chem. Res. 2012, 21, 257.  doi: 10.1007/s00044-010-9532-x

    80. [80]

      Carlsen, P. H. J.; Jørgensen, K. B. J. Heterocycl. Chem. 1994, 31, 805.  doi: 10.1002/jhet.v31:4

    81. [81]

      Zhang, P.; Qu, S. N.; Wang, H. T.; Bai, B. L.; Li, M. Liq. Cryst. 2008, 35, 389.  doi: 10.1080/02678290801902564

    82. [82]

      Al-Talib, M.; Tastoush, H.; Odeh, N. Synth. Commun. 1990, 20, 1811.  doi: 10.1080/00397919008053105

    83. [83]

      Isobe, T.; Ishikawa, T. J. Org. Chem. 1999, 64, 6989.  doi: 10.1021/jo9909756

    84. [84]

      James, C. A.; Poirier, B.; Grisé, C.; Martel, A.; Ruediger, E. H. Tetrahedron Lett. 2006, 47, 511.  doi: 10.1016/j.tetlet.2005.11.057

    85. [85]

      Liras, S.; Allen, M. P.; Segelstein, B. E. Synth. Commun. 2000, 30, 437.  doi: 10.1080/00397910008087340

    86. [86]

      Sharnin, G. P. Khim. Geterotsikl. 1977, 6, 741.

    87. [87]

      Kettner, M. A.; Klapötke, T. M.; Witkowski, T. G.; Hundling, F. V. Chem.-Eur. J. 2015, 21, 4238.  doi: 10.1002/chem.v21.11

    88. [88]

      Tian, J. W.; Xiong, H. L.; Lin, Q. H.; Cheng, G. B.; Yang, H. W. New J. Chem. 2017, 41, 1918.  doi: 10.1039/C6NJ03608B

    89. [89]

      Yu, Q.; Imler, G. M.; Parrish, D. A.; Shreeve, J. M. Chem.-Eur. J. 2017, 23, 17682.  doi: 10.1002/chem.201704939

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    5. [5]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    6. [6]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    7. [7]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    8. [8]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    9. [9]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    10. [10]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    11. [11]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    12. [12]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    13. [13]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    14. [14]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    15. [15]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    16. [16]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    17. [17]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    18. [18]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    19. [19]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    20. [20]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

Metrics
  • PDF Downloads(12)
  • Abstract views(1452)
  • HTML views(177)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return