Citation: Jia Huijie, Han Limin, Zhu Ning, Gao Yuanyuan, Wang Yaqi, Suo Quanling. A Study on Recognition Property of Acetylferrocenyl Benzothiazole to Al3+, Cr3+ and Fe3+[J]. Chinese Journal of Organic Chemistry, ;2019, 39(6): 1753-1760. doi: 10.6023/cjoc201811024 shu

A Study on Recognition Property of Acetylferrocenyl Benzothiazole to Al3+, Cr3+ and Fe3+

  • Corresponding author: Suo Quanling, szj010062@163.com
  • Received Date: 19 November 2018
    Revised Date: 24 January 2019
    Available Online: 21 June 2019

    Fund Project: the National Nutural Science Foumdation of China 21266019Project supported by the National Nutural Science Foumdation of China (Nos. 21062011, 21266019, 21761026, 21762032)the National Nutural Science Foumdation of China 21062011the National Nutural Science Foumdation of China 21761026the National Nutural Science Foumdation of China 21762032

Figures(12)

  • 2-(1'-Acetyl-ferrocenyl) benzothiazole (FcSO) probe was synthesized by the acetylization reaction of 2-ferrocenyl benzothiazole, which was obtained from the cyclization reaction of ferrocenecarboxaldehyde with 2-aminothiophenol. Crystal and molecule structures of FcSO probe were characterized by spectra methods and X-ray single crystal diffraction analysis. The recognition ability to Al3+, Cr3+, Fe3+ ions of FcSO probe was researched by three analytical methods of UV-Vis, fluorescence and electrochemistry. The results show that the recognition to Al3+, Cr3+, Fe3+ ions of FcSO probe is effective via three channels, and the detection limits of FcSO probe to Al3+, Cr3+, Fe3+ ions are 7.456×10-6, 3.72×10-6 and 1.35×10-5 mol/L, respectively. 1H NMR research results indicate that the acetyl, ferrocenyl and benzothiazole groups of FcSO probe play important roles in recognizing Al3+, Cr3+, Fe3+ ions.
  • 加载中
    1. [1]

    2. [2]

      Wilkinson, G.; Rosenblum, M.; Whiting, M. C.; Woodward, R. B. J. Am. Chem.Soc. 1952, 74, 2125.  doi: 10.1021/ja01128a527

    3. [3]

      Suzanne, F. F.; Béatrice, D. N. J. Photochem. Photobiol., A 2000, 132, 137.  doi: 10.1016/S1010-6030(00)00213-6

    4. [4]

      Rouf, A.; Tanyeli, C. Eur. J. Med. Chem. 2015, 97, 911.  doi: 10.1016/j.ejmech.2014.10.058

    5. [5]

      Adzal, O.; Akhtar, M. S.; Kumar, S.; Ali, M. R.; Jaggi, M.; Bawa, S. Eur. J. Med. Chem. 2016, 121, 318.  doi: 10.1016/j.ejmech.2016.05.038

    6. [6]

      Kamal, A.; Syed, M. A. H.; Mohammed, S. M. Expert Opin. Ther. Pat. 2015, 25, 335.  doi: 10.1517/13543776.2014.999764

    7. [7]

      (a) Wagh, Y. B.; Kuwar, A.; Sahoo, S. K.; Gallucci, J.; Dalal, D. S. RSC Adv. 2015, 5, 45528.
      (b) Khairnar, N.; Tayade, K.; Sahoo, S. K.; Bondhopadhyay, B.; Basu, A.; Singh, J.; Singh, N.; Gite, V.; Kuwar, A. Dalton Trans. 2015, 44, 2097.
      (c) Li, Z.-X.; Zhao, W.-Y.; Li, X.-Y.; Zhu, Y.-Y.; Liu, C.-M.; Wang, L.-N.; Yu, M.-M.; Wei, L.-H.; Tang, M.-S.; Zhang, H.-Y. Inorg. Chem. 2012, 51, 12444.
      (d) Kumar, C. K.; Trivedi, R.; Giribabu, L.; Niveditha, S.; Bhanuprakash, K.; Sridhar, B. J. Organomet. Chem. 2015, 780, 20.
      (e) Gao, Y.; Liu, H.-M.; Liu, Q.-L.; Wang, W. Tetrahedron Lett. 2016, 57, 1852.

    8. [8]

      (a) Ju, H.; Chang, D. J.; Kim, S.; Ryu, H.; Lee, E.; Park, I.-H.; Jung, J. H.; Ikeda, M.; Habata, Y.; Lee, S. S. Inorg. Chem. 2016, 55, 7448.
      (b) Mei, Q. B.; Tian, R. Q.; Shi, Y. J.; Hua, Q. F.; Chen, C.; Tong, B. H. New J. Chem. 2016, 40, 2333.
      (c) Paul, S.; Goswami, S.; Das, M. C. New J. Chem. 2015, 39, 8940.
      (d) Puthiyedath, T.; Bahulayan, D. Sens. Actuators, B 2018, 272, 110.
      (e) Patil, M.; Bothra, S.; Sahoo, S. K.; Rather, H. A.; Vasita, R.; Bendre, R.; Kuwar, A. Sens. Actuators, B 2018, 270, 200.
      (f) Li, W.-T.; Qu, W.-J.; Zhu, X.; Li, Q.; Zhang, H.-L.; Yao, H.; Lin, Q.; Zhang, Y.-M.; Wei, T.-B. Sci. China, Chem. 2017, 60, 754.
      (g) Dong, W.-X.; Bu, L.-L.; Tang, W.-Q.; Zhao, S.-L.; Xie, Y.-S. Sci. China, Chem. 2017, 60, 1212.
      (h) Bai, Z.-Q.; Ren, X.-L.; Gong, Z.; Hao, C.-X.; Chen, Y.-M.; Wan, P.-Y.; Meng, X.-W. Chin. Chem. Lett. 2017, 28, 1901.
      (i) Chen, Y.-H.; Wei, T.-W.; Zhang, Z.-J.; Zhang, W.; Lv, J.; Chen, T.-T.; Chi, B.; Wang, F.; Chen, X.-Q. Chin. Chem. Lett. 2017, 28, 1957.

    9. [9]

      (a) He, B.; Pun, A. B.; Zherebetskyy, D.; Liu, Y.; Liu, F.; Klivansky, L. M.; Mcgough, A. M.; Zhang, B.; Lo, K.; Russell, T. P.; Wang, L.-N.; Liu, Y. J. Am. Chem. Soc. 2014, 136, 15093.
      (b) Chereddy, N. R.; Suman, K.; Korrapati, P. S.; Thennarasu, S. A.; Manda, B. Dyes Pigm. 2012, 95, 606.

    10. [10]

      Wu, H.; Zhou, P.; Wang, J.; Zhao, L.; Duan, C. New J. Chem. 2009, 33, 653.  doi: 10.1039/B815207A

    11. [11]

      Perl, D. P.; Gajdusek, D. C.; Garruto, R. M.; Yanagihara, R. T.; Gibbs, C. J. Science 1982, 217, 1053.  doi: 10.1126/science.7112111

    12. [12]

      (a) Liu, Y.-F.; Hu, J.-F.; Teng, Q.; Zhang, H. Sens. Actuators, B 2017, 238, 166.
      (b) Bhatta, S. R.; Mondal, B.; Vijaykumar, G.; Thakur, A. Inorg. Chem. 2017, 56, 11577.
      (c) González, M. C.; Otón, F.; Espinosa, A.; Tárraga, A.; Molina, P. Chem. Commun. 2013, 49, 9633.
      (d) Kaur, N.; Kaur, P.; Singh, K. Sens. Actuators, B 2016, 229, 499.
      (e) Ponniah S, J.; Barik, S. K.; Thakur, A.; Ganesamoorthi, R.; Ghosh, S. Organometallics 2014, 33, 3096.

    13. [13]

      Kumar, C. K.; Trivedi, R.; Giribabu, L.; Niveditha, S.; Bhanuprakash, K.; Sridhar, B. J. Organomet. Chem. 2015, 780, 20.  doi: 10.1016/j.jorganchem.2014.12.027

    14. [14]

      Wu, X.-F.; Wu, P.; Liu, J.-Y.; Lu, J.; Wang, J.-C. Chin. J. Org. Chem. 2017, 37, 1412 (in Chinese).
       

    15. [15]

      Bakthadoss, M.; Selvakumar, R.; Srinivasan, J. Tetrahedron Lett. 2014, 55, 5808.  doi: 10.1016/j.tetlet.2014.08.084

    16. [16]

      Sališová, M.; Prokešová, M.; Kubričanová, M.; Toma, Š. Chem. Pap. 1993, 47, 183.

    17. [17]

      Sheldrick, G. M. SHELXS-97, University of G ttingen, Germany, 1997.

    18. [18]

      Babu, M. M. Nucleic Acids Res. 2003, 31, 3345.  doi: 10.1093/nar/gkg528

    19. [19]

      Benseiand, H. A.; Hildebran, J. H. J. Am. Chem. Soc. 1949, 71, 2703.  doi: 10.1021/ja01176a030

    20. [20]

      (a) Mao, J.; Wang, L.-N.; Dou, W.; Tang, X.-L.; Yan, Y.; Liu, W.-S. Org. Lett. 2007, 9, 4567.
      (b) Li, Z.; Hu, Q.; Li, C.; Dou, J.; Cao, J.; Chen, W.; Zhu, Q. Tetrahedron Lett. 2014, 55, 1258.

    21. [21]

      Ong, W.; Kaifer, A. E. Organometallics 2003, 22, 4181.  doi: 10.1021/om030305x

    22. [22]

      (a) Sharma, N.; Ajay, J. K.; Venkatasubbaiah, K.; Lourderaj, U. Phys. Chem. Chem. Phys. 2015, 17, 22204.
      (b) Gu, H.-B.; Mu, S.-D.; Qiu, G.-R.; Li, X.; Zhang, L.; Yuan, Y.-F.; Astruc, D. Coord. Chem. Rev. 2018, 364, 51.

  • 加载中
    1. [1]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    2. [2]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    3. [3]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    6. [6]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    7. [7]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    11. [11]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    12. [12]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    13. [13]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    14. [14]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    15. [15]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    16. [16]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    17. [17]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    18. [18]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    19. [19]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    20. [20]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

Metrics
  • PDF Downloads(5)
  • Abstract views(776)
  • HTML views(144)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return