Citation: Zhang Wensheng, Xu Wenjing, Zhang Fei, Li Yan. Recent Progress in Synthesis of Polysubstituted Furans[J]. Chinese Journal of Organic Chemistry, ;2019, 39(5): 1277-1283. doi: 10.6023/cjoc201811023 shu

Recent Progress in Synthesis of Polysubstituted Furans

  • Corresponding author: Zhang Wensheng, tongjizws@163.com
  • Received Date: 18 November 2018
    Revised Date: 25 December 2018
    Available Online: 18 May 2019

    Fund Project: the Foundation and Frontier Research Program (the Natural Science Foundation) of Henan Province 162300410270Project supported by the Foundation and Frontier Research Program (the Natural Science Foundation) of Henan Province (No. 162300410270)

Figures(10)

  • Furan, an important class of oxygen-containing five-membered heterocyclic compounds, is not only the fundamental structure of many natural products, drugs and biologically active molecules, but also an valuable intermediate in organic synthesis. Synthesis of polysubstituted furans has been one of the focus of organic chemists. In this paper, recent progress in the synthesis of polysubstituted furans since 2013, including disubstituted, trisubstituted, tetrasubstituted furans and benzofurans is reviewed.
  • 加载中
    1. [1]

      (a) Hou, X. L.; Yang, Z.; Wong, H. N. C. Prog. Heterocycl. Chem. 2003, 15, 167.
      (b) Keay, B. A.; Dibble, P. W. In Comprehensive Heterocyclic Chemistry Ⅱ, Vol. 2, Eds.: Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Elsevier, Oxford, 1997, p. 395.
      (c) Suhre, M. H.; Reif, M.; Kirsch, S. F. Org. Lett. 2005, 7, 3925.
      (d) Rao, A. U.; Xiao, D.; Huang, X.; Zhou, W.; Fossetta, J.; Lundell, D.; Tian, F.; Trivedi, P.; Aslanian, R.; Palani, A. Bioorg. Med. Chem. Lett. 2012, 22, 1068.
      (e) Kumari, N.; Mishra, C. B.; Prakash, A.; Kumar, N.; Mongre, R.; Luthra, P. M. Neurosci. Lett. 2014, 558, 203.
      (f) Hasegawa, F.; Niidome, K.; Migihashi, C.; Murata, M.; Negoro, T.; Matsumoto, T.; Kato, K.; Fujii, A. Bioorg. Med. Chem. Lett. 2014, 24, 4266.

    2. [2]

      (a) Kalaitzakis, D.; Triantafyllakis, M.; Alexopoulou, I.; Sofiadis, M.; Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2014, 53, 13201.
      (b) Wang, Z.-L.; Li, H.-L.; Ge, L.-S.; An, X.-L.; Zhang, Z.-G.; Luo, X.; Fossey, J. S.; Deng, W.-P. J. Org. Chem. 2014, 79, 1156.

    3. [3]

      (a) Zeng, C.; Seino, H.; Ren, J.; Hatanaka, K.; Yoshie, N. Macromolecules 2013, 46, 1794.
      (b) Zeng, C.; Seino, H.; Ren, J.; Hatanaka, K.; Yoshie, N. Polymer 2013, 54, 5351.
      (c) Gidron, O.; Shimon, L. J. W.; Leitus, G.; Bendikov, M. Org. Lett. 2012, 14, 502.
      (d) Gidron, O.; Dadvand, A.; Sheynin, Y.; Bendikov, M.; Perepichka, D. F. Chem. Commun. 2011, 47, 1976.
      (e) Bunz, U. H. F. Angew. Chem., Int. Ed. 2010, 49, 5037.
      (f) Gidron, O.; Diskin-Posner, Y.; Bendikov, M. J. Am. Chem. Soc. 2010, 132, 2148.

    4. [4]

      Pérez, J. M.; Cano, R.; Yus, M.; Ramón, D. J. Synthesis 2013, 45, 1373.  doi: 10.1055/s-00000084

    5. [5]

      Reddy, C. R.; Krishna, G.; Reddy, M. D. Org. Biomol. Chem. 2014, 12, 1664.  doi: 10.1039/c3ob42396d

    6. [6]

      Fan, W.; Ma, S. M. Eur. J. Org. Chem. 2015, 3531.

    7. [7]

      Yang, Y. Z.; Yao, J. Z.; Zhang, Y. H. Org. Lett. 2013, 15, 3206.  doi: 10.1021/ol400912v

    8. [8]

      Ghosh, M.; Mishra, S.; Monir, K.; Hajra, A. Org. Biomol. Chem. 2015, 13, 309.  doi: 10.1039/C4OB01320D

    9. [9]

      Wang, T.; Shi, S.; Hansmann, M. M.; Rettenmeier, E.; Rudolph, M.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2014, 53, 3715.  doi: 10.1002/anie.v53.14

    10. [10]

      Deng, J. C.; Chuang, S. C. Org. Lett. 2014, 16, 5792.  doi: 10.1021/ol502879c

    11. [11]

      Ghosh, M.; Mishra, S.; Hajra, A. J. Org. Chem. 2015, 80, 5364.  doi: 10.1021/acs.joc.5b00704

    12. [12]

      Tang, S.; Liu, K.; Long, Y.; Qi, X. T.; Lan, Y.; Lei, A. W. Chem Commun. 2015, 8769.

    13. [13]

      Yu, Y.; Yi, S. G.; Zhu, C. L.; Hu, W. G.; Gao, B. J.; Chen, Y.; Wu, W. Q.; Jiang, H. F. Org. Lett. 2016, 18, 400.  doi: 10.1021/acs.orglett.5b03415

    14. [14]

      Dey, A.; Ali, M. A.; Jana, S.; Hajra, A. J. Org. Chem. 2017, 82, 4812.  doi: 10.1021/acs.joc.7b00476

    15. [15]

      Chen, R. S.; Fan, X.; Xu, Z. Z.; He, Z. J. Tetrahedron Lett. 2017, 58, 3722.  doi: 10.1016/j.tetlet.2017.08.027

    16. [16]

      Zhang, W. S.; Xu, W. J. Chem. Heterocycl. Compd. 2017, 53, 615.  doi: 10.1007/s10593-017-2100-2

    17. [17]

      He, T.; Gao, P.; Qiu, Y. F.; Yan, X. B.; Liu, X. Y.; Liang, Y. M. RSC Adv. 2013, 13, 19913.
       

    18. [18]

      Ma, Y. H.; Zhang, S.; Yang, S. P.; Song, F. J.; You, J. S. Angew. Chem., Int. Ed. 2014, 53, 7870.  doi: 10.1002/anie.201402475

    19. [19]

      Nitsch, D.; Bach, T. J. Org. Chem. 2014, 79, 6372.  doi: 10.1021/jo5009993

    20. [20]

      Song, C. L.; Wang, J. W.; Xu, Z. H. Org. Biomol. Chem. 2014, 12, 5802.  doi: 10.1039/C4OB00987H

    21. [21]

      Yue, Y. Y.; Zhang, Y. L.; Song, W. W.; Zhang, X.; Liu, J. M.; Zhuo, K. L. Adv. Synth. Catal. 2014, 356, 2459.  doi: 10.1002/adsc.v356.11/12

    22. [22]

      Reddy, C. R.; Mohammed, S. Z.; Kumaraswamy, P. Org. Biomol. Chem. 2015, 13, 8310.  doi: 10.1039/C5OB00989H

    23. [23]

      Mane, V.; Kumar, T.; Pradhan, S.; Katiyar, S.; Namboothiri, I. N. N. RSC Adv. 2015, 5, 69990.  doi: 10.1039/C5RA11471C

    24. [24]

      Zou, W.; He, Z. R.; He, Z. J. Chin. J. Org. Chem. 2015, 35, 1739(in Chinese).
       

    25. [25]

      Liu, J. M.; Ye, W. J.; Qing, X. S.; Wang, C. D. J. Org. Chem. 2016, 81, 7970.  doi: 10.1021/acs.joc.6b01259

    26. [26]

      Pathipati, S. R.; Werf, A.; Eriksson, L.; Selander, N. Angew. Chem., Int. Ed. 2016, 55, 11863.  doi: 10.1002/anie.201606108

    27. [27]

      Kuram, M. R.; Bhanuchandra, M.; Sahoo, A. K. Angew. Chem., Int. Ed. 2013, 52, 4607.  doi: 10.1002/anie.201210217

    28. [28]

      Sharma, U.; Naveen, T.; Maji, A.; Manna, S.; Maiti, D. Angew. Chem., Int. Ed. 2013, 52, 12669.  doi: 10.1002/anie.201305326

    29. [29]

      Yuan, H.; Bi, K. J.; Li, B.; Yue, R. C.; Ye, J.; Shen, Y. H.; Shan, L.; Jin, H. Z.; Sun, Q. Y.; Zhang, W. D. Org. Lett. 2013, 15, 4742.  doi: 10.1021/ol4021095

    30. [30]

      Markina, N. A.; Chen, Y.; Larock, R. C. Tetrahedron 2013, 69, 2701.  doi: 10.1016/j.tet.2013.02.003

    31. [31]

      Osyanin, V. A.; Osipov, D. V.; Demidov, M. R.; Klimochkin, Y. R. N. J. Org. Chem. 2014, 79, 1192.  doi: 10.1021/jo402543s

    32. [32]

      Tsuji, H.; Ilies, L.; Nakamura, E. Synlett 2014, 25, 2099.  doi: 10.1055/s-00000083

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    5. [5]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    6. [6]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    7. [7]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    8. [8]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    9. [9]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    10. [10]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    11. [11]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    12. [12]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    13. [13]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    14. [14]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    15. [15]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    16. [16]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    17. [17]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    18. [18]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    19. [19]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    20. [20]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

Metrics
  • PDF Downloads(33)
  • Abstract views(1827)
  • HTML views(530)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return