Citation: Zhu Jianrong, Ren Xiaojuan, Tang Feiyu, Pan Fei, Ye Longwu. Synthesis of α-Halo Amides via Zinc-Mediated Tandem Oxidation/Halogenation of Ynamides[J]. Chinese Journal of Organic Chemistry, ;2019, 39(4): 1102-1108. doi: 10.6023/cjoc201811007 shu

Synthesis of α-Halo Amides via Zinc-Mediated Tandem Oxidation/Halogenation of Ynamides

  • Corresponding author: Zhu Jianrong, zhujianrong@jingxinpharm.com Ye Longwu, longwuye@xmu.edu.cn
  • Received Date: 5 November 2018
    Revised Date: 29 November 2018
    Available Online: 17 April 2018

    Fund Project: the National Natural Science Foundation of China 21572186Project supported by the Key R&D Program of Zhejiang Province (No. 2017C03002) and the National Natural Science Foundation of China (No. 21572186)the Key R&D Program of Zhejiang Province 2017C03002

Figures(2)

  • α-Haloamides are a very important class of carbonyl compounds, and widely exist in a range of natural products and bioactive molecules. Herein, the realization of the tandem oxidation/halogenation of ynamides by employing the zinc halide as both the catalyst and the halogen source is described, thus avoiding the use of other external halogenating reagents. This method allows the practical synthesis of a variety of valuable α-haloamides in moderate to good yields.
  • 加载中
    1. [1]

      (a) Gribble, G. W. Naturally Occurring Organohalogen Compounds: A Comprehensive Update, Springer-Verlag, Wienheim, Germany, 2010.
      (b) Gribble, G. W. Naturally Occurring Organohalogen Compounds: A Comprehensive Survey, Springer-Verlag, Wienheim, Germany, 1996.

    2. [2]

      For recent selected reviews, see:
      (a) Chung, W.-J.; Vanderwal, C. D. Acc. Chem. Res. 2014, 47, 718.
      (b) Chemler, S. R.; Bovino, M. T. ACS Catal. 2013, 3, 1076.
      (c) Chelucci, G. Chem. Rev. 2012, 112, 1344.
      (d) Aubin, Y.; Fischmeister, C.; Thomas, C. M.; Renaud, J.-L. Chem. Soc. Rev. 2010, 39, 4130.
      (e) Roman, B. I.; De Kimpe, N.; Stevens, C. V. Chem. Rev. 2010, 110, 5914.

    3. [3]

      For reviews on catalytic intermolecular N-oxide oxidation of alkynes, see:
      (a) Zheng, Z.; Wang, Z.; Wang, Y.; Zhang, L. Chem. Soc. Rev. 2016, 45, 4448.
      (b) Zhou, B.; Li, L.; Ye, L.-W. Synlett 2016, 493.
      (c) Qian, D.; Zhang, J. Chem. Soc. Rev. 2015, 44, 677.
      (d) Yeom, H.-S.; Shin, S. Acc. Chem. Res. 2014, 47, 966.
      (e) Zhang, L. Acc. Chem. Res. 2014, 47, 877.
      (f) Xiao, J.; Li, X. Angew. Chem., Int. Ed. 2011, 50, 7226.

    4. [4]

      For recent selected examples, see:
      (a) Yang, J.-M.; Zhao, Y.-T.; Li, Z.-Q.; Gu, X.-S.; Zhu, S.-F.; Zhou, Q.-L. ACS Catal. 2018, 8, 7351.
      (b) Zhao, J.; Xu, W.; Xie, X.; Sun, N.; Li, X.; Liu, Y. Org. Lett. 2018, 20, 5461.
      (c) Li, J.; Xing, H.-W.; Yang, F.; Chen, Z.-S.; Ji, K. Org. Lett. 2018, 20, 4622.
      (d) Hamada, N.; Yamaguchi, A.; Inuki, S.; Oishi, S.; Ohno, H. Org. Lett. 2018, 20, 4401.
      (e) M. Lin, L. Zhu, J. Xia, Y. Yu, J. Chen, Z. Mao, X. Huang, Adv. Synth. Catal. 2018, 360, 2280.
      (f) Xu, Z.; Chen, H.; Wang, Z.; Ying, A.; Zhang, L. J. Am. Chem. Soc. 2016, 138, 5515.
      (g) Zeng, X.; Liu, S.; Shi, Z.; Liu, G.; Xu, B. Angew. Chem., Int. Ed. 2016, 55, 10032.
      (h) Zhang, Y.; Xue, Y.; Li, G.; Yuan, H.; Luo, T. Chem. Sci. 2016, 7, 5530.
      (i) Wang, Y.; Zheng, Z.; Zhang, L. J. Am. Chem. Soc. 2015, 137, 5316.
      (j) Chen, H.; Zhang, L. Angew. Chem., Int. Ed. 2015, 54, 11775.
      (k) Ji, K.; Zheng, Z.; Wang, Z.; Zhang, L. Angew. Chem., Int. Ed. 2015, 54, 1245.
      (l) Chen, M.; Chen, Y.; Sun, N.; Zhao, J.; Liu, Y.; Li, Y. Angew. Chem., Int. Ed. 2015, 54, 1200.
      (m) Zheng, Z.; Zhang, L. Org. Chem. Front. 2015, 2, 1556.
      (n) Ji, K.; Liu, X.; Du, B.; Yang, F.; Gao, J. Chem. Commun. 2015, 51, 10318.
      (o) Qian, D.; Hu, H.; Liu, F.; Tang, B.; Ye, W.; Wang, Y.; Zhang, J. Angew. Chem., Int. Ed. 2014, 53, 13751.

    5. [5]

    6. [6]

      (a) Wang, C.-M.; Qi, L.-J.; Sun, Q.; Zhou, B.; Zhang, Z.-X.; Shi, Z.-F.; Lin, S.-C.; Lu, X.; Gong, L.; Ye, L.-W. Green Chem. 2018, 20, 3271.
      (b) Shen, W.-B.; Sun, Q.; Li, L.; Liu, X.; Zhou, B.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Nat. Commun. 2017, 8, 1748.
      (c) Pan, F.; Li, X.-L.; Chen, X.-M.; Shu, C.; Ruan, P.-P.; Shen, C.-H.; Lu, X.; Ye, L.-W. ACS Catal. 2016, 6, 6055.
      (d) Ruan, P.-P.; Shen, C.-H.; Li, L.; Liu, C.-Y.; Ye, L.-W. Org. Chem. Front. 2016, 3, 989.
      (e) Li, L.; Zhou, B.; Wang, Y.-H.; Shu, C.; Pan, Y.-F.; Lu, X.; Ye, L.-W. Angew. Chem., Int. Ed. 2015, 54, 8245.
      (f) Li, L.; Shu, C.; Zhou, B.; Yu, Y.-F.; Xiao, X.-Y.; Ye, L.-W. Chem. Sci. 2014, 5, 4057.
      (g) Pan, F.; Liu, S.; Shu, C.; Lin, R.-K.; Yu, Y.-F.; Zhou, J.-M.; Ye, L.-W. Chem. Commun. 2014, 50, 10726.

    7. [7]

      For recent reviews on ynamide reactivity, see:
      (a) Pan, F.; Shu, C.; Ye, L.-W. Org. Biomol. Chem. 2016, 14, 9456.
      (b) Evano, G.; Theunissen, C.; Lecomte, M. Aldrichim. Acta 2015, 48, 59.
      (c) Wang, X.-N.; Yeom, H.-S.; Fang, L.-C.; He, S.; Ma, Z.-X.; Kedrowski, B. L.; Hsung, R. P. Acc. Chem. Res. 2014, 47, 560.
      (d) DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064.
      (e) Evano, G.; Coste, A.; Jouvin, K. Angew. Chem., Int. Ed. 2010, 49, 2840.

    8. [8]

      For selected examples from our group, see:
      (a) Zhou, B.; Li, L.; Zhu, X.-Q.; Yan, J.-Z.; Guo, Y.-L.; Ye, L.-W. Angew. Chem., Int. Ed. 2017, 56, 4015.
      (b) Shen, W.-B.; Xiao, X.-Y.; Sun, Q.; Zhou, B.; Zhu, X.-Q.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Angew. Chem., Int. Ed. 2017, 56, 605.
      (c) Li, L.; Chen, X.-M.; Wang, Z.-S.; Zhou, B.; Liu, X.; Lu, X.; Ye, L.-W. ACS Catal. 2017, 7, 4004.
      (d) Shu, C.; Wang, Y.-H.; Shen, C.-H.; Ruan, P.-P.; Lu, X.; Ye, L.-W. Org. Lett. 2016, 18, 3254.
      (e) Pan, Y.; Chen, G.-W.; Shen, C.-H.; He, W.; Ye, L.-W. Org. Chem. Front. 2016, 3, 491.
      (f) Shu, C.; Wang, Y.-H.; Zhou, B.; Li, X.-L.; Ping, Y.-F.; Lu, X.; Ye, L.-W. J. Am. Chem. Soc. 2015, 137, 9567.
      (g) Zhou, A.-H.; He, Q.; Shu, C.; Yu, Y.-F.; Liu, S.; Zhao, T.; Zhang, W.; Lu, X.; Ye, L.-W. Chem. Sci. 2015, 6, 1265.

    9. [9]

      Pan, F.; Shu, C.; Ping, Y.-F.; Pan, Y.-F.; Ruan, P.-P.; Fei, Q.-R.; Ye, L.-W. J. Org. Chem. 2015, 80, 10009.  doi: 10.1021/acs.joc.5b01608

    10. [10]

      (a) Wang, Y.; Ji, K.; Lan, S.; Zhang, L. Angew. Chem., Int. Ed. 2012, 51, 1915.
      (b) Henrion, G.; Chava, T. E. J.; Le Goff, X.; Gagosz, F. Angew. Chem., Int. Ed. 2013, 52, 6277.

    11. [11]

      For recent selected examples, see: (a) Liu, Y.; Dong, W. Chin. J. Chem. 2017, 35, 1491.
      (b) Xie, L.; Wu, Y.; Yi, W.; Zhu, L.; Xiang, J.; He, W. J. Org. Chem. 2013, 78, 9190.

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    3. [3]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    4. [4]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    5. [5]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    6. [6]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    7. [7]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    8. [8]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    9. [9]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    10. [10]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    11. [11]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    12. [12]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    15. [15]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    16. [16]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    17. [17]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    18. [18]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    19. [19]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    20. [20]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

Metrics
  • PDF Downloads(25)
  • Abstract views(860)
  • HTML views(158)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return