Citation: Huo Bochao, Li Bin, Su Hang, Zeng Xianqiang, Xu Kaidi, Cui Lei. Linear and Cross-Linked Supramolecular Polymers Based on a Dibenzo-24-crown-8 Bridged Pillar[5]arene Dimer[J]. Chinese Journal of Organic Chemistry, ;2019, 39(7): 1990-1995. doi: 10.6023/cjoc201811003 shu

Linear and Cross-Linked Supramolecular Polymers Based on a Dibenzo-24-crown-8 Bridged Pillar[5]arene Dimer

  • Corresponding author: Cui Lei, cuilei@shu.edu.cn
  • Received Date: 1 November 2018
    Revised Date: 22 January 2019
    Available Online: 29 July 2019

    Fund Project: the National Natural Science Foundation of China 21472122the National Natural Science Foundation of China 21772118Project supported by the National Natural Science Foundation of China (Nos. 21772118, 21472122)

Figures(5)

  • One hybrid host molecule of dibenzo-24-crown-8 bridged pillar[5]arene dimer (1) was designed and synthesized. The combination of host 1 and ditopic guest 2 containing two 5-(1H-1, 2, 3-triazol-1-yl)pentanenitrile (TAPN) binding sites could afford linear AA/BB-type supramolecular polymers based on TAPN•pillar[5]arene recognition motif. Further introduction of ditopic guest 3 containing two secondary ammonium parts yields cross-linked supramolecular polymers through the host-guest inclusion between dibenzo-24-crown-8 and secondary ammonium salt. The supramolecular polymers were characterized by various techniques such as 1H NMR, viscosity, DOSY and SEM, indicating that the formation of these supramolecular polymer was concentration-dependent. The critical polymerization concentration (CPC) of the formation of linear supramolecular polymers in chloroform/acetone (V:V=4:1) solutions is 28 mmol/L. This work provides a new strategy for the fabrication of novel supramolecular aggregates based on orthogonal host-guest interactions of hybrid macrocycles.
  • 加载中
    1. [1]

      Fouquey, C.; Lehn, J. M.; Levelut, A. M. Adv. Mater. 1990, 2, 254.  doi: 10.1002/adma.19900020506

    2. [2]

      Wijnands, S. P. W.; Engelen, W.; Lafleur, R. P. M.; Meijer, E. W.; Merkx, M. Nat. Commun. 2018, 9, 65.  doi: 10.1038/s41467-017-02559-0

    3. [3]

      Zhou, Z.; Yan, X.; Cook, T. R.; Saha, M. L.; Stang, P. J. J. Am. Chem. Soc. 2016, 13, 806.

    4. [4]

      Hu, X.; Zhang, P.; Wu, X.; Xia, W.; Xiao, T.; Jiang, J.; Lin, C.; Wang, L. Polym. Chem. 2012, 3, 3060.  doi: 10.1039/c2py20285a

    5. [5]

      Xu, J.; Zhang, X. Acta Polym. Sin. 2017, 1, 37(in Chinese).  doi: 10.11777/j.issn1000-3304.2017.16262

    6. [6]

    7. [7]

      Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Chem. Rev. 2015, 115, 7196.  doi: 10.1021/cr500633b

    8. [8]

      Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 2495.  doi: 10.1021/ja00986a052

    9. [9]

      Yan, X.; Xu, D.; Chen, J.; Zhang, M.; Hu, B.; Yu, Y.; Huang, F. Polym. Chem. 2013, 4, 3312.  doi: 10.1039/c3py00283g

    10. [10]

      Cheng, S.-C.; Chen, K.-J.; Suzaki, Y.; Tsuchido, Y.; Kuo, T.-S.; Osakada, K.; Horie, M. J. Am. Chem. Soc. 2017, 140, 90.

    11. [11]

      Chen, K.-J.; Tsai, Y.-C.; Suzaki, Y.; Osakada, K.; Miura, A.; Horie, M. Nat. Commun. 2016, 7, 13321.  doi: 10.1038/ncomms13321

    12. [12]

      Miyauchi, M.; Harada, A. J. Am. Chem. Soc. 2004, 126, 11418.  doi: 10.1021/ja046562q

    13. [13]

      Liu, Y.; Song, S.-H.; Chen, Y.; Zhao, Y.-L.; Yang, Y.-W. Chem. Commun. 2005, 13, 1702.
       

    14. [14]

      Zhang, Q.; Qu, D.-H.; Ma, X.; Tian, H. Chem. Commun. 2013, 49, 9800.  doi: 10.1039/c3cc46297h

    15. [15]

      Zhang, Q.; Qu, D.-H.; Wu, J.; Ma, X.; Wang, Q.; Tian, H. Langmuir 2013, 29, 5345.  doi: 10.1021/la4012444

    16. [16]

      Guo, Q.-H.; Fu, Z.-D.; Zhao, L.; Wang, M.-X. Angew. Chem., Int. Ed. 2014, 53, 13548.  doi: 10.1002/anie.201407670

    17. [17]

      Qian, H.; Guo, D.-S.; Liu, Y. Asian J. Org. Chem. 2012, 1, 155.  doi: 10.1002/ajoc.201200050

    18. [18]

      Yao, X.; Ma, X.; Tian, H. J. Mater. Chem. C 2014, 2, 5155.  doi: 10.1039/c4tc00503a

    19. [19]

      Guo, D.; Zhang, T.; Wang, Y.; Liu, Y. Chem. Commun. 2013, 49, 6779.  doi: 10.1039/c3cc41918e

    20. [20]

      Villari, V.; Gattuso, G.; Notti, A.; Pappalardo, A.; Micali, N. J. Phys. Chem. B 2012, 116, 5537.  doi: 10.1021/jp300848n

    21. [21]

      Liu, Y.; Liu, K.; Wang, Z.; Zhang, X. Chem. Eur. J. 2011, 17, 9930.  doi: 10.1002/chem.201101611

    22. [22]

      Harada, A.; Takashima, Y.; Yamaguchi, H. Chem. Soc. Rev. 2009, 38, 875.  doi: 10.1039/b705458k

    23. [23]

      Ogoshi, T.; Kayama, H.; Yamafuji, D.; Aoki, T.; Yamagishi, T. A. Chem. Sci. 2012, 3, 3221.  doi: 10.1039/c2sc20982a

    24. [24]

      Li, C.; Han, K.; Li, J.; Zhang, Y.; Chen, W.; Yu, Y.; Jia, X. Chem. Eur. J. 2013, 19, 11892.  doi: 10.1002/chem.201301022

    25. [25]

      Nan, S.; Takahiro, K.; Tada-Aki, Y.; Yang, Y.-W.; Tomoki, O. Chem 2018, 4, 2029.  doi: 10.1016/j.chempr.2018.05.015

    26. [26]

      Yan, X.; Wang, F.; Zheng, B.; Huang, F. Chem. Soc. Rev. 2012, 41, 6042.  doi: 10.1039/c2cs35091b

    27. [27]

      Wei, P.; Yan, X.; Huang, F. Chem. Soc. Rev. 2012, 44, 815.

    28. [28]

      Lou, X.-Y.; Yang, Y.-W. Adv. Opt. Mater. 2018, 6, 1800668.  doi: 10.1002/adom.201800668

    29. [29]

      Wu, X.; Duan, Q.; Ni, M.; Hu, X.; Wang, L. Chin. J. Org. Chem. 2014, 34, 437(in Chinese).
       

    30. [30]

      Li, M.; Han, K.; Li, J.; Jia, X.; Li, C. Acta Polym. Sin. 2017, 129(in Chinese).  doi: 10.11777/j.issn1000-3304.2017.16276

    31. [31]

      Liu, Y.; Yang, Y.-W.; Li, L.; Chen, Y. Org. Biomol. Chem. 2004, 2, 1542.  doi: 10.1039/B402841D

    32. [32]

      Li, S.-L.; Xiao, T.; Hu, B.; Zhang, Y.; Zhao, F.; Ji, Y.; Yu, Y.; Lin, C.; Wang, L. Chem. Commun. 2011, 47, 10755.  doi: 10.1039/c1cc14559b

    33. [33]

      Wang, K.; Guo, D.; Zhao, H.; Liu, Y. Chem. Eur. J. 2014, 20, 4023.  doi: 10.1002/chem.201303344

    34. [34]

      Guo, D.-S.; Chen, K.; Zhang, H.-Q.; Liu, Y. Chem. Asian J. 2009, 4, 436.  doi: 10.1002/asia.200800410

    35. [35]

      Zhao, H.; Guo, D.; Wang, L.; Qian, H.; Liu, Y. Chem. Commun. 2012, 48, 11319.  doi: 10.1039/c2cc34834a

    36. [36]

      Li, H.; Wang, J.; Ni, Y.; Zhou, Y.; Yan, D. Acta Chim. Sinica 2016, 74, 415(in Chinese).
       

    37. [37]

      Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T. A.; Nakamoto, Y. J. Am. Chem. Soc. 2008, 130, 5022.  doi: 10.1021/ja711260m

    38. [38]

      Ogoshi, T.; Takashima, S.; Yamagishi, T. J. Am. Chem. Soc. 2015, 137, 10962.  doi: 10.1021/jacs.5b07415

    39. [39]

      Li, C. Chem. Commun. 2014, 50, 12420.  doi: 10.1039/C4CC03170A

    40. [40]

      Kakuta, T.; Yamagishi, T.; Ogoshi, T. Acc. Chem. Res. 2018, 51, 1656.  doi: 10.1021/acs.accounts.8b00157

    41. [41]

      Mirzaei, S.; Wang, D.; Lindeman, S. V.; Sem, C. M.; Rathore, R. Org. Lett. 2018, 20, 6583.  doi: 10.1021/acs.orglett.8b02937

    42. [42]

      Trinh, T. M.; Nierengarten, I.; Holler, M. Chem. Eur. J. 2015, 21, 8019.  doi: 10.1002/chem.201501124

    43. [43]

      Hu, W.-B.; Yang, H.-M.; Hu, W.-J.; Ma, M.-L.; Zhao, X.-L.; Mi, X.-Q.; Liu, Y.; Li, J.-S.; Jiang, B.; Wen, K. Chem. Commun. 2014, 50, 10460.  doi: 10.1039/C4CC01810A

    44. [44]

      Li, C.; Zhao, L.; Li, J; Ding, X.; Chen, S.; Zhang, Q.; Yu, Y.; Jia, X. Chem. Commun. 2010, 46, 9016.  doi: 10.1039/c0cc03575k

    45. [45]

      Li, Z.-Y.; Zhang, Y.; Zhang, C.-W.; Chen, L.-J.; Wang, C.; Tan, H.; Yu, Y.; Li, X.; Yang, H.-B. J. Am. Chem. Soc. 2014, 136, 8577.  doi: 10.1021/ja413047r

    46. [46]

      Li, C.; Xu, Q.; Li, J.; Yao, F.; Jia, X. Org. Biomol. Chem. 2010, 8, 1568.  doi: 10.1039/b920146g

    47. [47]

      Sun, Y.; Guo, F.; Zuo, T.; Hua, J.; Diao, G. Nat. Commun. 2016, 7, 12042.  doi: 10.1038/ncomms12042

    48. [48]

      Wang, Y.; Ping, G.; Li, C. Chem. Commun. 2016, 52, 9858.  doi: 10.1039/C6CC03999E

    49. [49]

      Wheate, N. J.; Dickson, K. A.; Kim, R. R.; Nematollahi, A.; Macquart, R. B.; Kayser, V.; Yu, G. C.; Bret Church, W.; Marsh, D. J. J. Pharm. Sci. 2016, 105, 3615.  doi: 10.1016/j.xphs.2016.09.008

    50. [50]

      Li, B.; Meng, Z.; Li, Q.; Huang, X.; Kang, Z.; Dong, H.; Chen, J.; Sun, J.; Dong, Y.; Li, J.; Jia, X.; Sessler, J. L.; Meng, Q.; Li, C. Chem. Sci. 2017, 8, 4458.  doi: 10.1039/C7SC01438D

    51. [51]

      Huerta, E.; Metselaar, G. A.; Fragoso, A.; Santos, E.; Bo, C.; De, M. J. Angew. Chem., Int. Ed. 2007, 46, 202.  doi: 10.1002/anie.200603223

    52. [52]

      Zhang, Z.; Luo, Y.; Chen, J.; Dong, S.; Yu, Y.; Ma, Z.; Huang, F. Angew. Chem., Int. Ed. 2011, 50, 1397.  doi: 10.1002/anie.201006693

    53. [53]

      Wang, C.; Lv, M.-Z.; Song, N.; Liu, Z.-J.; Wang, C.; Yang, Y.-W. Macromolecules 2017, 50, 5759.  doi: 10.1021/acs.macromol.7b01010

    54. [54]

      Song, N.; Chen, D.; Xia, M.-C.; Qiu, X.-L.; Ma, K.; Xu, B.; Tian, W.; Yang, Y.-W. Chem. Commun. 2015, 51, 5526.  doi: 10.1039/C4CC08205B

    55. [55]

      Wang, K.; Wang, C.-Y.; Wang, Y.; Li, H.; Bao, C.-Y.; Liu, J.; Zhang, S. X.-A.; Yang, Y.-W. Chem. Commun. 2013, 49, 10528.  doi: 10.1039/c3cc46477f

    56. [56]

      Shao, L.; Sun, J.; Hua, B.; Huang, F. Chem. Commun. 2018, 54, 4866.  doi: 10.1039/C8CC02077A

    57. [57]

      Khairou, K.; Hassan, R. Eur. Polym. J. 2000, 36, 2021.  doi: 10.1016/S0014-3057(99)00040-3

    58. [58]

      Song, N.; Chen, D.-X.; Qiu, Y.-C.; Yang, X.-Y.; Xu, B.; Tian, W.; Yang, Y.-W. Chem. Commun. 2014, 50, 8231.  doi: 10.1039/c4cc03105a

    59. [59]

      Li, C.; Chen, S.; Li, J.; Han, K.; Xu, M.; Hu, B.; Yu, Y.; Jia, X. Chem. Commun. 2011, 47, 11294.  doi: 10.1039/c1cc14829j

    60. [60]

      Han, K.; Zhang, Y.; Li, J.; Yu, Y.; Jia, X.; Li, C. Eur. J. Org. Chem. 2013, 11, 2057.
       

    61. [61]

      Li, C.; Han, K.; Li, J.; Zhang, H.; Ma, J.; Shu, X.; Chen, Z.; Weng, L.; Jia, X. Org. Lett. 2012, 14, 42.  doi: 10.1021/ol2027834

    62. [62]

      Shu, X.; Chen, W.; Hou, D.; Meng, Q.; Zheng, R.; Li, C. Chem. Commun. 2014, 50, 4820.  doi: 10.1039/C4CC00800F

    63. [63]

      Wang, X.; Han, K.; Li, J.; Jia, X.; Li, C. Polym. Chem. 2013, 4, 3998.  doi: 10.1039/c3py00462g

    64. [64]

      S ntjens, S. H. M.; Sijbesma, R. P.; van Genderen, M. H. P.; Meijer, E. W. Macromolecules 2001, 34, 3815.  doi: 10.1021/ma002010q

    65. [65]

      Xu, H.; Rudkevich, D. M. Chem. Eur. J. 2010, 10, 5432.

  • 加载中
    1. [1]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    2. [2]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    3. [3]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    4. [4]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    5. [5]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    6. [6]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    7. [7]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    8. [8]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    9. [9]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    10. [10]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    11. [11]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    12. [12]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    13. [13]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    14. [14]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    16. [16]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    17. [17]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    18. [18]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    19. [19]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    20. [20]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

Metrics
  • PDF Downloads(10)
  • Abstract views(950)
  • HTML views(158)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return