Citation: Yang Yang, Guo Ju, Liu Zhanzhu. Progress in the Synthesis of Analogues of Bistetrahdro-isoquinoline Antitumor Alkaloids[J]. Chinese Journal of Organic Chemistry, ;2019, 39(7): 1913-1922. doi: 10.6023/cjoc201810037 shu

Progress in the Synthesis of Analogues of Bistetrahdro-isoquinoline Antitumor Alkaloids

  • Corresponding author: Guo Ju, guoju1984@163.com Liu Zhanzhu, liuzhanzhu@imm.ac.cn
  • Received Date: 30 October 2018
    Revised Date: 25 January 2019
    Available Online: 29 July 2019

    Fund Project: the Pilot Program of Scientific Research Project of Hubei Provincial Department of Education B2016057the Open Fund of Key Laboratory of New Reactor and Green Chemical Technology of Hubei Provincial 201704the Research Fund Project of Wuhan Institute of Technology K201440Project supported by the Research Fund Project of Wuhan Institute of Technology (No. K201440), the Pilot Program of Scientific Research Project of Hubei Provincial Department of Education (No. B2016057), the Open Fund of Key Laboratory of New Reactor and Green Chemical Technology of Hubei Provincial (No. 201704)

Figures(9)

  • Since the first tetrahydroisoquinoline alkaloid (THIQ), naphthyridinomycin, was found by Canadian scientist Kluepfel in 1974, nearly hundred members of this family have been reported. Such THIQ has attracted the research interest of many chemists and biologists due to its excellent biological activity and complex chemical structure. Especially, as an outstanding member of THIQ family, Ecteinascidin 743 (ET-743) has been commercialized in the European Union for the treatment of soft tissue tumors and ovarian cancer. Due to the extremely low content of natural products of bistetrahydroisoquinoline including ET-743 and the complexity of its chemical structure, the modification of its chemical structure has attracted more and more attention. Based on this, the recent advance in the synthesis of bistetrahydroisoquinoline analogues is reviewed.
  • 加载中
    1. [1]

      Kluepfel, D.; Baker, H. A.; Piattoni, G.; Sehgal, S. N.; Sidorowicz, A.; Singh, K.; Vezina, C. J. Antibiot. 1975, 28, 497.  doi: 10.7164/antibiotics.28.497

    2. [2]

      Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669.  doi: 10.1021/cr010212u

    3. [3]

      Martinez, E. J.; Owa, T.; Schreiber, S. L.; Corey, E. J. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 3496.  doi: 10.1073/pnas.96.7.3496

    4. [4]

      Martinez, E. J.; Corey, E. J.; Owa, T. Chem. Biol. 2001, 8, 1151.  doi: 10.1016/S1074-5521(01)00082-5

    5. [5]

      Plowright, A. T.; Schaus, S. E.; Myers, A. G. Chem. Biol. 2002, 9, 607.  doi: 10.1016/S1074-5521(02)00137-0

    6. [6]

      Cuevas, C.; Manzanares, I.; Perez, M.; Martin, M. J.; Rodriguez, A.; Munt, S. (Pharma Mar, S. A.). ES 2231486 T3, 2003.

    7. [7]

      Corey, E. J.; Gin, D. Y.; Kania, R. S. J. Am. Chem. Soc. 1996, 118, 9202.  doi: 10.1021/ja962480t

    8. [8]

      Eduardo, J. M.; Corey, E. J. Org. Lett. 1999, 1, 75.  doi: 10.1021/ol990553i

    9. [9]

      Cuevas, C.; Pérez, M.; Martín, M. J.; Chicharro, J. L.; Fernádez, R. C.; Flores, M.; Francesch, A.; Gallego, P.; Zarzuelo, M.; Calle, F.; García, J.; Polanco, C.; Rodríguez, I.; Manzanares, I. Org. Lett. 2000, 2, 2545.  doi: 10.1021/ol0062502

    10. [10]

      Chen, J.-C.; Chen, X.-C.; Michele, B. C.; Zhu, J.-P. J. Am. Chem. Soc. 2006, 128, 87  doi: 10.1021/ja0571794

    11. [11]

      Chen, X.; Zhu, J. Angew. Chem., Int. Ed. 2007, 46, 3962.  doi: 10.1002/anie.200700539

    12. [12]

      Jonathan, W.; Chen, Y.-Y.; Williams, R. M. J. Am. Chem. Soc. 2005, 127, 12684.  doi: 10.1021/ja0535918

    13. [13]

      Smith, L. H. S.; Nguyen, T. T.; Sneddon, H. F.; Procter, D. J. Chem. Commun. 2011, 47, 10821  doi: 10.1039/c1cc13992d

    14. [14]

      Xu, S.-H.; Wang, G.; Zhu, J.-J.; Shen, C.; Yang, Z.-Z.; Yu, J.; Li, Z.; Lin, T.-H.; Sun, X.; Zhang, F.-L. Eur. J. Org. Chem. 2017, 5, 975.

    15. [15]

      Wang. Y.; Tang, Y.-F.; Liu, Z.-Z.; Chern, S.-Z.; Liang, X.-T. Chin. J. Org. Chem. 2005, 25, 42(in Chinese).  doi: 10.3321/j.issn:0253-2786.2005.01.005
       

    16. [16]

      Liao, X, -W.; Dong, W.-F.; Liu, W.; Chen, S.-Z.; Liu, Z.-Z. Chin. J. Org. Chem. 2010, 30, 317(in Chinese).
       

    17. [17]

      Song, Y.-T.; Hu, L.-L.; Chen, R.-J.; Chen, X.-C. Chin. J. Org. Chem. 2015, 35, 1627(in Chinese).
       

    18. [18]

      Rinehart, K. L.; Holt, T. G.; Fregeau, N. L.; Stroh, J. G.; Kieffer, P. A.; Sun, F.; Li, L.-H.; Martin, D. G. J. Org. Chem. 1990, 55, 4512.  doi: 10.1021/jo00302a007

    19. [19]

      Rinehart, K. L.; Holt, T. G.; Fregeau, N. L.; Stroh, J. G.; Kieffer, P. A.; Sun, F.; Li, L.-H.; Martin, D. G. J. Org. Chem. 1991, 56, 1676.  doi: 10.1021/jo00004a063

    20. [20]

      Endo, A.; Yanagisawa, A.; Abe, M.; Tohma, S.; Kan, T.; Fukuyama, T. J. Am. Chem. Soc. 2002, 124, 6552.  doi: 10.1021/ja026216d

    21. [21]

      Zheng, S.; Chan, C.; Furuuchi, T.; Wright, B.; Zhou, B.; Guo. J.; Danishefsky, S. J. J. Angew. Chem., Int. Ed. 2006, 45, 1754.  doi: 10.1002/anie.200503983

    22. [22]

      Jeffrey, R..; Martin, S.; Jason, O.; Peter, S.; Stacie, A. D.; Catherine, M.; Hyunjin, M. K.; Zhang, P-L.; Neil, S.; Katherine, G. M.; Juthamas, S.; Doris, G.; Ohn, E.; Peter, R. Y.; Myers, A. G.; Green, M. J. Bioorg. Med. Chem. Lett. 2006, 16, 4884.  doi: 10.1016/j.bmcl.2006.06.085

    23. [23]

      Ocio, E. M.; Maiso, P.; Chen, X.; Garayoa, M.; Alvarez-Fernandez, S.; SanSegundo, L.; Vilanova, D.; Lopez-Corral, L.; Montero, J. C.; HernandezIglesias, T.; Alava, E.; Galmarini, C.; Aviles, P.; Cuevas, C.; Pandiella, A. Blood. 2009, 113, 3781.  doi: 10.1182/blood-2008-09-177774

    24. [24]

      Leal, J. F. M.; Garcia-Hernandez, V.; Moneo, V.; Domingo, A.; Bueren-Calabuig, J. A.; Negri, A.; Gago, F.; Guillen-Navarro, M. J.; Aviles, P.; Cuevas, C.; GarciaFernandez, L. F.; Galmarini, C. Biochem. Pharmacol. 2009, 78, 162.  doi: 10.1016/j.bcp.2009.04.003

    25. [25]

      Roberto, M.; Martinez, V.; Alberto, R.; Natividad, R.; Flores, M.; Gallego, P.; Manzanares, I.; Cuevas, C. J. Org. Chem. 2003, 68, 8859.  doi: 10.1021/jo034547i

    26. [26]

      Plácido, A. C.; Marta, P.; Cuevas, C.; Andrés, F.; Manzanares, I.; Antonio, M.; Echavarren. Eur. J. Org. Chem. 2006, 8, 1926.

    27. [27]

      Zhou, B.-S.; Guo, J. S.; Danishefsky, S. J. Tetra. Lett. 2000, 41, 2043.  doi: 10.1016/S0040-4039(00)00106-4

    28. [28]

      Benjamin, J.; Wright, D.; Collin C.; Danishefsky, S. J. J. Nat. Prod. 2008, 71, 409.  doi: 10.1021/np800022x

    29. [29]

      Kubo, A.; Saito, N.; Yamauchi, R.; Sakai, S. Chem. Pharm. Bull. 1987, 35, 2158.  doi: 10.1248/cpb.35.2158

    30. [30]

      Kubo, A.; Saito, N.; Yamato, H.; Kawakarmi, Y. Chem. Pharm. Bull. 1987, 35, 2525.  doi: 10.1248/cpb.35.2525

    31. [31]

      Kubo, A.; Saito, N.; Nakamura, M.; Ogata, K.; Sakai, S. Heterocycles 1987, 26, 1765.  doi: 10.3987/R-1987-07-1765

    32. [32]

      Kubo, A.; Saito, N.; Yamato, H.; Yamauchi, R.; Hiruma, K.; Inoue, S. Chem. Pharm. Bull. 1988, 36, 2607.  doi: 10.1248/cpb.36.2607

    33. [33]

      Kubo, A.; Saito, N.; Yamato, H.; Masubuchi, K.; Nakamura, M. J. Org. Chem. 1988, 53, 4295.  doi: 10.1021/jo00253a022

    34. [34]

      Shinya, K.; Shintaro, K.; Masayuki, A.; Yoshifumi, U.; Koizumi, Y.; Masashi, Y.; Saito, N. Heterocycles 2015, 90, 327.  doi: 10.3987/COM-14-S(K)24

    35. [35]

      Masashi, Y.; Ryoko, T.; Toshihiro, S.; Vy, H. L.; Williams, R. M.; Saito, N. J. Org. Chem. 2016, 81, 4039.  doi: 10.1021/acs.joc.6b00327

    36. [36]

      Christian, R.; Razafindrabe.; Sylvain, A.; Benjamin B.; Andriantsiferana, M.; Stéphane, P. R.; Lemaire, M. Tetrahedron 2010, 66, 9061.  doi: 10.1016/j.tet.2010.08.053

    37. [37]

      Kawagishi, F.; Toma, T.; Inui, T.; Yokoshima, S.; Fukuyama, T. J. Am. Chem. Soc. 2013, 135, 13684.  doi: 10.1021/ja408034x

    38. [38]

      Chen, R.; Liu, H.; Chen, X. J. Nat. Prod. 2013, 76, 1789.  doi: 10.1021/np400538q

    39. [39]

      Chen, R.; Zhu, D.; Hu, Z.; Zheng, Z.; Chen, X. Tetrahedron:Asymmetry 2010, 21, 39.  doi: 10.1016/j.tetasy.2009.12.024

    40. [40]

      Chen, R.; Liu, H.; Liu, X.; Chen, X. Tetrahedron 2013, 69, 3565.  doi: 10.1016/j.tet.2013.02.079

    41. [41]

      Liu, H.; Chen, R.; Chen, X. Org. Biomol. Chem. 2014, 12, 1633.  doi: 10.1039/c3ob42209g

    42. [42]

      Jia, J.; Chen, R.; Liu, H.; Li, X.; Jia, Y.; Chen, X. Org. Biomol. Chem. 2016, 14, 7334.  doi: 10.1039/C6OB01064D

    43. [43]

      González, J. F.; Cuesta, E.; Avendano, C. Bioorg. Med. Chem. 2007, 15, 112.  doi: 10.1016/j.bmc.2006.10.009

    44. [44]

      Ortín, I.; González, J. F.; Cuesta, E.; Cristina, M. G.; Rosario P.; Avendano, C. Bioorg. Med. Chem. 2008, 16, 9065.  doi: 10.1016/j.bmc.2008.07.083

    45. [45]

      Ortín, I.; González, J. F.; Cuesta, E.; Avendano, C. Tetrahedron 2009, 65, 2201.  doi: 10.1016/j.tet.2009.01.051

    46. [46]

      Ortín, I.; González, J. F.; Cuesta, E.; Avendano, C. Tetrahedron 2009, 65, 9944.  doi: 10.1016/j.tet.2009.10.016

    47. [47]

      Ortín, I.; González, J. F.; Cuesta, E.; Avendano, C. Bioorg. Med. Chem. 2010, 18, 6813.  doi: 10.1016/j.bmc.2010.07.049

    48. [48]

      Tuyen, N. V.; Pieter, C.; Norbert, D. K. Synlett 2014, 45, 69.

    49. [49]

      Tang, Y.-F.; Liu, Z.-Z.; Chen, S.-Z. Tetrahedron Lett. 2003, 44, 7091.  doi: 10.1016/S0040-4039(03)01785-4

    50. [50]

      Liao, X.-W.; Liu, W.; Dong, W.-F.; Guan, B.-H.; Chen, S.-Z.; Liu, Z.-Z. Tetrahedron 2009, 65, 5709.  doi: 10.1016/j.tet.2009.05.025

    51. [51]

      Liu, W.; Dong, W.-F.; Liao, X.-W.; Yan, Z.; Guan, B.-H.; Wang, N.; Liu, Z.-Z. Bioorg. Med. Chem. Lett. 2011, 21, 1419.  doi: 10.1016/j.bmcl.2011.01.025

    52. [52]

      Dong, W.-F.; Liu, W.; Liao, X.-W.; Guan, B.-H.; Chen, S.-Z.; Liu, Z.-Z. J. Org. Chem. 2011, 76, 5363.  doi: 10.1021/jo200758r

    53. [53]

      Liu, W.; Liao, X.-W.; Dong, W.-F.; Yan, Z.; Wang, N.; Liu, Z.-Z. Tetrahedron 2012, 68, 2759.  doi: 10.1016/j.tet.2012.02.016

    54. [54]

      Dong, W.-F.; Liu. W.; Yan, Z.; Liao, X.-W.; Guan, B.-H.; Wang, N.; Liu, Z.-Z. Eur. J. Med. Chem. 2012, 49, 239.  doi: 10.1016/j.ejmech.2012.01.017

    55. [55]

      Liu, Z.-Z.; Wang, Y.; Tang, Y.-F.; Chen, S.-Z.; Chen, X.-G.; Li, H.-Y. Bioorg. Med. Chem. Lett. 2006, 16, 1282.  doi: 10.1016/j.bmcl.2005.11.069

    56. [56]

      Guo, J.; Dong, W.-F.; Liu, W.; Yan, Z.; Wang, N.; Liu, Z.-Z. Eur. J. Med. Chem. 2013, 62, 670.  doi: 10.1016/j.ejmech.2013.01.033

    57. [57]

      Guo, J.; Yang, Y.; Wang, N.; Liu, Z.-Z. Tetrahedron Lett. 2018, 33, 3202.

    58. [58]

      Lu, X.-R.; Pan, X.; Yang, Y.; Ji, M.; Chen, X.-G.; Xiao, Z.-Y.; Liu, Z.-Z. Eur. J. Med. Chem. 2017, 135, 260.  doi: 10.1016/j.ejmech.2017.04.061

    59. [59]

      Eric, R. W.; Aurapat, N.; Max, K.; Guillaume, L.; Gerit, M. P.; Martina, S. J. M.; Dylan, C.; Christopher, D. G.; Pamela, M. T.; Christopher, K. H.; Kenji, N.; Emil, G.; Christian, U. G.; Kevin, M. A.; Scott, C. V.; Dennis, J. S.; Brian, M. S. Science 2019, 363, 270.  doi: 10.1126/science.aav3421

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    4. [4]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    5. [5]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    6. [6]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    7. [7]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    8. [8]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    9. [9]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    10. [10]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    11. [11]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    12. [12]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    13. [13]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    15. [15]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    16. [16]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    17. [17]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    18. [18]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    19. [19]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    20. [20]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

Metrics
  • PDF Downloads(22)
  • Abstract views(1423)
  • HTML views(310)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return