Progress of Trifluoromethylation Using Trifluoroacetic Acid and Its Derivatives as CF3-Sources
- Corresponding author: Zhang Yanghui, zhangyanghui@tongji.edu.cn
Citation:
Ji Xiaoming, Shi Guangfa, Zhang Yanghui. Progress of Trifluoromethylation Using Trifluoroacetic Acid and Its Derivatives as CF3-Sources[J]. Chinese Journal of Organic Chemistry,
;2019, 39(4): 929-939.
doi:
10.6023/cjoc201810033
(a) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
(b) Li, Y.; Wu, Y.; Li, G.-S.; Wang, X.-S. Adv. Synth. Catal. 2014, 356, 1412.
Jeschke, P. ChemBioChem 2004, 5, 570.
doi: 10.1002/cbic.v5:5
(a) O'Hagan, D.; Harper, D. B. J. Fluorine Chem. 1999, 100, 127.
(b) Vaillancourt, F. H.; Yeh, E.; Vosburg, D. A.; GarneauTsodikova, S.; Walsh, C. T. Chem. Rev. 2006, 106, 3364.
(a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(b) Schlosser, M. Angew. Chem., Int. Ed. 2006, 45, 5432.
Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
doi: 10.1039/B610213C
(a) Penning, T. D.; Talley, J. J.; Bertenshaw, S.R.; Carter, J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K. A.; Veenhuizen, W. Y.; Zhang, Y.; Isakson, P.C. J. Med. Chem. 1997, 40, 1347.
(b) Chakraborti, A. K.; Garg, S. K.; Kumar, R.; Motiwala, H. F.; Jadhavar, P. S. Curr. Med. Chem. 2010, 17, 1563.
(a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(b) Prakash, S. G. K.; Yudin, A. K. Chem. Rev. 1997, 97, 757.
(a) Ye, Y.; Ball, N. D.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2010, 132, 14682.
(b) Wang, X.; Truesdale, L.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 3648.
(c) Zhang, X.; Dai, H.; Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2012, 134, 11948.
(d) Mu, X.; Chen, S.; Zhen, X.; Liu, G. Chem.-Eur. J. 2011, 17, 6039.
(e) Zhang, L.-S.; Chen, K.; Chen, G.; Li, B.-J.; Luo, S.; Guo, Q.-Y.; Wei, J.-B.; Shi, Z.-J. Org. Lett. 2013, 15, 10.
(f) Miura, M.; Feng, C.-G.; Ma, S.; Yu, J.-Q. Org. Lett. 2013, 15, 5258.
(g) Culkin, D. A.; Hartwig, J. F. Organometallics 2004, 23, 3398.
(h) Grushin, V. V. Acc. Chem. Res. 2010, 43, 160.
(i) Hughes, R. P.; Meyer, M. A.; Tawa, M. D.; Ward, A. J.; Williamson, A.; Rheingold, A. L.; Zakharov, L. N. Inorg. Chem. 2004, 43, 747.
(j) Ball, N. D.; Gary, J. B.; Ye, Y.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 7577.
(k) Ball, N. D.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2010, 132, 2878.
(l) Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. Science 2010, 328, 1679.
(a) Shimizu, R.; Egami, H.; Nagi, T.; Chae, J.; Hamashima, Y.; Sodeoka, M. Tetrahedron Lett. 2011, 51, 5947.
(b) Zhang, C.-P.; Wang, Z.-L.; Chen, Q.-Y.; Zhang, C.-T.; Gu, Y.-C.; Xiao, J.-C. Angew. Chem., Int. Ed. 2011, 50, 1896.
(c) Liu, T.; Shen, Q. Org. Lett. 2016, 13, 2342.
(d) Chu, L.; Qing, F.-L. J. Am. Chem. Soc. 2012, 134, 1298.
(e) Cai, S.; Chen, C.; Sun, Z.; Xi, C. Chem. Commun. 2013, 49, 4552.
(f) He, Z.; Tan, P.; Hu, J. Org. Lett. 2016, 18, 72.
(g) Li, X.; Zhao, J.; Zhang, L.; Hu, M.; Wang, L.; Hu J. Org. Lett. 2015, 17, 298.
(h) Gao, X.; Xiao, Y.-L.; Wan, X.; Zhang X. Angew. Chem., Int. Ed. 2018, 57, 3187.
(i) Xu, X.; Chen, H.; He, J.; Xu, H. Chin. J. Chem. 2017, 35, 1665.
(a) Hafner, A.; Stefan, B. Angew. Chem., Int. Ed. 2012, 51, 3713.
(b) Ye, Y.; Lee, S. H.; Sanford, M. S. Org. Lett. 2011, 13, 5464.
(c) Loy, R. N.; Sanford, M. S. Org. Lett. 2011, 13, 2548.
(d) Seo, S.; Taylor, J. B.; Greaney, M. F. Chem. Commun. 2013, 49, 6385.
(e) Liu, Y.-R.; Tu, H.-Y.; Zhang, X.-G. Synthesis 2015, 47, 3460.
Kino, T.; Nagase, Y.; Ohtsuka, Y.; Yamamoto, K.; Uraguchi, D.; Tokuhisa, K.; Yamakawa, T. J. Fluorine Chem. 2010, 131, 98.
doi: 10.1016/j.jfluchem.2009.09.007
(a) Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224.
(b) Iqbal, N.; Choi, S.; Ko, E.; Cho, E. J. Tetrahedron Lett. 2012, 53, 2005.
(c) Kamigata, N.; Fukushima, T.; Yoshida, M. Chem. Lett. 1990, 649.
(d) Kamigata, N.; Ohtsuka, T.; Fukushima, T.; Yoshida, M.; Shimizu, T. J. Chem. Soc. Perkin Trans. 1 1994, 1339.
(e) Xie, J.; Yuan, X.; Abdukader, A.; Zhu, C.; Ma, J. Org. Lett. 2014, 16, 1768.
Mejía, E.; Togni, A. ACS Catal. 2012, 2, 521.
doi: 10.1021/cs300089y
(a) Studer, A. Angew. Chem., Int. Ed. 2012, 51, 8950.
(b) Parsons, A. T.; Buchwald, S. L. Nature 2011, 480, 184.
(a) Ji, Y.; Brueckl, T.; Baxter, R. D.; Fujiwara, Y.; Seiple, I. B.; Su, S.; Blackmond, D. G.; Baran, P. S. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 14411.
(b) Fujiwara, Y.; Dixon, J. A.; O’Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.; Ishihara, Y.; Baran, P. S. Nature 2012, 492, 95.
(c) Wu, X.; Chu,L.; Qing, F.-L. Tetrahedron Lett. 2013, 54, 249.
(d) Yang, Y.-D.; Iwamoto, K.; Tokunaga, E.; Shibata, N. Chem. Commun. 2013, 49, 5510.
(e) Fennewald, J. C.; Lipshutz, B. H. Green Chem. 2014, 16, 1097. (f) Cui, L.; Matusaki, Y.; Tada, N.; Miura, T.; Uno, B.; Itoh, A. Adv. Synth. Catal. 2013, 355, 2203.
(a) Umemoto, T. Chem. Rev. 1996, 96, 1757.
(b) Prakash, G. K. S.; Hu, J. Acc. Chem. Res. 2007, 40, 921.
(c) Prakash, G. K. S.; Yudin, A. K. Chem. Rev. 1997, 97, 757.
(d) Shibata, N.; Matsnev, A.; Cahard, D. Beilstein J. Org. Chem. 2010, 6, 65.
(e) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513.
Shi, G.; Shao, C.; Pan, S.; Yu, J.; Zhang, Y. Org. Lett. 2015, 17, 38.
doi: 10.1021/ol503189j
(a) Lopez, S. E.; Salazar, J. J. Fluorine Chem. 2013, 156, 73.
(b) Rui, S.; Lei, L. Sci. China Chem. 2011, 54, 1670.
(c) Rodríguez, N.; Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030.
Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
doi: 10.1021/cr4002879
Matsui, K.; Tobita, E.; Ando, M.; Kondo, K. Chem. Lett. 1981, 12, 1719.
Hünig, S.; Bau, R.; Kemmer, M.; Meixner, H.; Metzenthin, T.; Peters, K.; Sinzger, K.; Gulbis, J. Eur. J. Org. Chem. 1998, 2, 335.
Austin, N. E.; Avenell, K. Y.; Boyfield, I.; Branch, C. L.; Hadley, M. S.; Jeffrey, P.; Johnson, C. N.; Macdonald, G. J.; Nash, D. J.; Riley, G. J.; Smith, A. B.; Stemp, G.; Thewlis, K. M.; Vong, A. K. K.; Wood, M. D. Bioorg. Med. Chem. Lett. 2001, 11, 685.
doi: 10.1016/S0960-894X(01)00037-3
Langlois, B. R.; Roques, N. J. Fluorine Chem. 2007, 128. 1318.
doi: 10.1016/j.jfluchem.2007.08.001
McReynolds, K. A.; Lewis, R. S.; Ackerman, L. K. G.; Dubinina, G. G.; Brennessel, W. W.; Vicic, D. A. J. Fluorine Chem. 2010, 131, 1108.
doi: 10.1016/j.jfluchem.2010.04.005
Li, Y.; Chen, T.; Wang, H.; Zhang, R.; Jin, K.; Wang, X.; Duan, C. Synlett 2011, 1713.
Schareina, T.; Wu, X.-F.; Zapf, A.; Cotte, A.; Gotta, M.; Beller, M. Top Catal. 2012, 55, 426.
doi: 10.1007/s11244-012-9824-0
Chen, M.; Buchwald, S. L. Angew. Chem., Int. Ed. 2013, 52, 11628.
doi: 10.1002/anie.201306094
Maleckis, A.; Sanford, M. S. Organometallics 2014, 33, 2653.
doi: 10.1021/om500398z
Lin, X.; Hou, C.; Li, H.; Weng, Z. Chem.-Eur. J. 2016, 22, 2075.
doi: 10.1002/chem.201504306
Torikai, K.; Koga, R.; Liu, X.; Umehara, K.; Kitano, T.; Watanabe, K.; Oishi, T.; Noguchi, H.; Shimohigashi, Y. Bioorg. Med. Chem. 2017, 25, 5216.
doi: 10.1016/j.bmc.2017.07.067
(a) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242.
(b) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293.
(c) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Chem. Rev. 2015, 115, 12138.
(d) Song, G.; Li, X. Acc. Chem. Res. 2015, 48, 1007.
(e) Guo, X.-X.; Gu, D.-W.; Wu, Z.; Zhang, W. Chem. Rev. 2015, 115, 1622.
(f) Zheng, C.; You, S.-L. RSC Adv. 2014, 4, 6173.
(g) Ackermann, L. Chem. Rev. 2011, 111, 1315.
(h) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936.
(i) Zhang, Y.; Shi, G.; Yu, J.-Q. Carbon-Carbon σ-Bond Formation via C—H Bond Functionalization in Comprehensive Organic Synthesis,2nd ed., Vol. 3, Eds.: Molander, G.; Knochel, P.,Elsevier, Oxford, 2014, pp. 1101~1209.
Grinberg, V. A.; Polishchuk, V. R.; German, L. S.; Kanevskii, L. S.; Vassiliev, Y. B. Izv. Akad. Nauk SSSR, Ser. Khim. 1978, 3, 673.
Sawada, H.; Nakayama, M.; Yoshida, M.; Yoshida, T.; Kamigata, N. J. Fluorine Chem. 1990, 46, 423.
doi: 10.1016/S0022-1139(00)82927-9
Lai, C.; Mallouk, T. E. J. Chem. Soc., Chem. Commun. 1993, 17, 1359.
Matsui, M.; Kondoh, S.; Shibata, K.; Muramatsu, H. Bull. Chem. Soc. Jpn. 1995, 68, 1042.
doi: 10.1246/bcsj.68.1042
Tanabe, Y.; Matsuo, N.; Ohno, N. J. Org. Chem. 1988, 53, 4583.
Depecker, C.; Marzouk, H.; Trevin, S.; Devynck, J. New J. Chem. 1999, 23, 739.
doi: 10.1039/a901305i
Beatty, J. W.; Douglas, J. J.; Cole, K. P.; Stephenson, C. R. J. Nat. Commun. 2015, 6, 7919.
doi: 10.1038/ncomms8919
Zhong, S.; Hafner, A.; Hussal, C.; Nieger, M.; Brase, S. RSC Adv. 2015, 5, 6255.
doi: 10.1039/C4RA13430C
Lin, J.; Li, Z.; Kan, J.; Huang, S.; Su, W.; Li, Y. Nat. Commun. 2017, 8, 1.
doi: 10.1038/s41467-016-0009-6
Yang, B.; Yu, D.; Xu, X.-H.; Qing, F.-L. ACS Catal. 2018, 8, 2839.
doi: 10.1021/acscatal.7b03990
(a) Parsons, A. T.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 9120.
(b) Xu, J.; Fu, Y.; Luo, D.-F.; Jiang, Y.-Y.; Xiao, B.; Liu, Z.-J.; Gong, T.-J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 15300.
(c) Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 16410.
(d) Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X. Angew. Chem., Int. Ed. 2013, 52, 6962.
Brookes, C. J.; Coe, P. L.; Owen, D. M.; Pedler, A. E.; Tatlow, J. C. J. Chem. Soc., Chem. Commun. 1974, 9, 323.
Barton, D. H. R.; Lacher, B.; Zard, S. Z. Tetrahedron 1986, 42, 2325.
doi: 10.1016/S0040-4020(01)90613-1
Jablonski, L.; Joubert, J.; Billard, T.; Langlois, B. R. Synlett 2003, 230.
Chang, Y.; Cai, C. J. Fluorine Chem. 2005, 126, 937.
doi: 10.1016/j.jfluchem.2005.04.012
Arai, K.; Watts, K.; Wirth, T. ChemistryOpen 2014, 3, 23.
doi: 10.1002/open.201300039
Kawamura, S.; Sodeoka, M. Angew. Chem., Int. Ed. 2016, 55, 8740.
doi: 10.1002/anie.201604127
Valverde, E.; Kawamura, S.; Sekine, D.; Sodeoka, M. Chem. Sci. 2018, 9, 7115.
doi: 10.1039/C8SC02547A
Zhang, Y.; Li, Z.; Song, H.; Wang, B. Chin. J. Chem. 2018, 36, 635.
doi: 10.1002/cjoc.v36.7
Zhongyan Cao , Youzhi Xu , Menghua Li , Xiao Xiao , Xianqiang Kong , Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017
Shahua Huang , Xiaoming Guo , Lin Lin , Guangping Chang , Sheng Han , Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064
Tingting Yu , Si Chen , Lianglong Sun , Tongtong Shi , Kai Sun , Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022
Yang Chen , Peng Chen , Yuyang Song , Yuxue Jin , Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
Benhua Wang , Chaoyi Yao , Yiming Li , Qing Liu , Minhuan Lan , Guipeng Yu , Yiming Luo , Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070
Jin Yan , Chengxia Tong , Yajie Li , Yue Gu , Xuejian Qu , Shigang Wei , Wanchun Zhu , Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008
Fengmiao Yu , Yang Sheng , Chanyue Li , Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105
Yingying Chen , Di Xu , Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
Yujing Chen , Hongqun Ouyang , Dan Zhao , Yanyan Chu , Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Xiaofeng Xia , Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063
Jian Jin , Jing Cheng , Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010
Feng Han , Fuxian Wan , Ying Li , Congcong Zhang , Yuanhong Zhang , Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181
Chengpeng Liu , Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
Mi Wen , Baoshuo Jia , Yongqi Chai , Tong Wang , Jianbo Liu , Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147