Citation: Ji Xiaoming, Shi Guangfa, Zhang Yanghui. Progress of Trifluoromethylation Using Trifluoroacetic Acid and Its Derivatives as CF3-Sources[J]. Chinese Journal of Organic Chemistry, ;2019, 39(4): 929-939. doi: 10.6023/cjoc201810033 shu

Progress of Trifluoromethylation Using Trifluoroacetic Acid and Its Derivatives as CF3-Sources

  • Corresponding author: Zhang Yanghui, zhangyanghui@tongji.edu.cn
  • Received Date: 25 October 2018
    Revised Date: 6 December 2018
    Available Online: 21 April 2018

    Fund Project: the National Natural Science Foundation of China 21672162Project supported by the National Natural Science Foundation of China (Nos.21372176, 21672162)the National Natural Science Foundation of China 21372176

Figures(30)

  • Organic molecules containing trifluoromethyl groups often exhibit unique physical and chemical properties, and have found extensive applications. Trifluoroacetic acid and its derivatives have advantages including low cost, ready availability and high stability. Furthermore, CO2 is the byproduct. Therefore, trifluoroacetic acid and its derivatives are ideal trifluoromethylating reagents, and have great application potentials. The progress of trifluoromethylation reactions using trifluoroacetic acid and its derivatives as CF3-sources is reviewed, including the reactions of C-X (X=Br and I), C-H, and C=X (X=C, O). The mechanisms are also introduced.
  • 加载中
    1. [1]

      (a) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
      (b) Li, Y.; Wu, Y.; Li, G.-S.; Wang, X.-S. Adv. Synth. Catal. 2014, 356, 1412.

    2. [2]

      Jeschke, P. ChemBioChem 2004, 5, 570.  doi: 10.1002/cbic.v5:5

    3. [3]

      (a) O'Hagan, D.; Harper, D. B. J. Fluorine Chem. 1999, 100, 127.
      (b) Vaillancourt, F. H.; Yeh, E.; Vosburg, D. A.; GarneauTsodikova, S.; Walsh, C. T. Chem. Rev. 2006, 106, 3364.

    4. [4]

      (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
      (b) Schlosser, M. Angew. Chem., Int. Ed. 2006, 45, 5432.

    5. [5]

      Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.  doi: 10.1039/B610213C

    6. [6]

    7. [7]

      (a) Penning, T. D.; Talley, J. J.; Bertenshaw, S.R.; Carter, J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K. A.; Veenhuizen, W. Y.; Zhang, Y.; Isakson, P.C. J. Med. Chem. 1997, 40, 1347.
      (b) Chakraborti, A. K.; Garg, S. K.; Kumar, R.; Motiwala, H. F.; Jadhavar, P. S. Curr. Med. Chem. 2010, 17, 1563.

    8. [8]

      (a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (b) Prakash, S. G. K.; Yudin, A. K. Chem. Rev. 1997, 97, 757.

    9. [9]

      (a) Ye, Y.; Ball, N. D.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2010, 132, 14682.
      (b) Wang, X.; Truesdale, L.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 3648.
      (c) Zhang, X.; Dai, H.; Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2012, 134, 11948.
      (d) Mu, X.; Chen, S.; Zhen, X.; Liu, G. Chem.-Eur. J. 2011, 17, 6039.
      (e) Zhang, L.-S.; Chen, K.; Chen, G.; Li, B.-J.; Luo, S.; Guo, Q.-Y.; Wei, J.-B.; Shi, Z.-J. Org. Lett. 2013, 15, 10.
      (f) Miura, M.; Feng, C.-G.; Ma, S.; Yu, J.-Q. Org. Lett. 2013, 15, 5258.
      (g) Culkin, D. A.; Hartwig, J. F. Organometallics 2004, 23, 3398.
      (h) Grushin, V. V. Acc. Chem. Res. 2010, 43, 160.
      (i) Hughes, R. P.; Meyer, M. A.; Tawa, M. D.; Ward, A. J.; Williamson, A.; Rheingold, A. L.; Zakharov, L. N. Inorg. Chem. 2004, 43, 747.
      (j) Ball, N. D.; Gary, J. B.; Ye, Y.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 7577.
      (k) Ball, N. D.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2010, 132, 2878.
      (l) Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. Science 2010, 328, 1679.

    10. [10]

      (a) Shimizu, R.; Egami, H.; Nagi, T.; Chae, J.; Hamashima, Y.; Sodeoka, M. Tetrahedron Lett. 2011, 51, 5947.
      (b) Zhang, C.-P.; Wang, Z.-L.; Chen, Q.-Y.; Zhang, C.-T.; Gu, Y.-C.; Xiao, J.-C. Angew. Chem., Int. Ed. 2011, 50, 1896.
      (c) Liu, T.; Shen, Q. Org. Lett. 2016, 13, 2342.
      (d) Chu, L.; Qing, F.-L. J. Am. Chem. Soc. 2012, 134, 1298.
      (e) Cai, S.; Chen, C.; Sun, Z.; Xi, C. Chem. Commun. 2013, 49, 4552.
      (f) He, Z.; Tan, P.; Hu, J. Org. Lett. 2016, 18, 72.
      (g) Li, X.; Zhao, J.; Zhang, L.; Hu, M.; Wang, L.; Hu J. Org. Lett. 2015, 17, 298.
      (h) Gao, X.; Xiao, Y.-L.; Wan, X.; Zhang X. Angew. Chem., Int. Ed. 2018, 57, 3187.
      (i) Xu, X.; Chen, H.; He, J.; Xu, H. Chin. J. Chem. 2017, 35, 1665.

    11. [11]

      (a) Hafner, A.; Stefan, B. Angew. Chem., Int. Ed. 2012, 51, 3713.
      (b) Ye, Y.; Lee, S. H.; Sanford, M. S. Org. Lett. 2011, 13, 5464.
      (c) Loy, R. N.; Sanford, M. S. Org. Lett. 2011, 13, 2548.
      (d) Seo, S.; Taylor, J. B.; Greaney, M. F. Chem. Commun. 2013, 49, 6385.
      (e) Liu, Y.-R.; Tu, H.-Y.; Zhang, X.-G. Synthesis 2015, 47, 3460.

    12. [12]

      Kino, T.; Nagase, Y.; Ohtsuka, Y.; Yamamoto, K.; Uraguchi, D.; Tokuhisa, K.; Yamakawa, T. J. Fluorine Chem. 2010, 131, 98.  doi: 10.1016/j.jfluchem.2009.09.007

    13. [13]

      (a) Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224.
      (b) Iqbal, N.; Choi, S.; Ko, E.; Cho, E. J. Tetrahedron Lett. 2012, 53, 2005.
      (c) Kamigata, N.; Fukushima, T.; Yoshida, M. Chem. Lett. 1990, 649.
      (d) Kamigata, N.; Ohtsuka, T.; Fukushima, T.; Yoshida, M.; Shimizu, T. J. Chem. Soc. Perkin Trans. 1 1994, 1339.
      (e) Xie, J.; Yuan, X.; Abdukader, A.; Zhu, C.; Ma, J. Org. Lett. 2014, 16, 1768.

    14. [14]

      Mejía, E.; Togni, A. ACS Catal. 2012, 2, 521.  doi: 10.1021/cs300089y

    15. [15]

      (a) Studer, A. Angew. Chem., Int. Ed. 2012, 51, 8950.
      (b) Parsons, A. T.; Buchwald, S. L. Nature 2011, 480, 184.

    16. [16]

      (a) Ji, Y.; Brueckl, T.; Baxter, R. D.; Fujiwara, Y.; Seiple, I. B.; Su, S.; Blackmond, D. G.; Baran, P. S. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 14411.
      (b) Fujiwara, Y.; Dixon, J. A.; O’Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.; Ishihara, Y.; Baran, P. S. Nature 2012, 492, 95.
      (c) Wu, X.; Chu,L.; Qing, F.-L. Tetrahedron Lett. 2013, 54, 249.
      (d) Yang, Y.-D.; Iwamoto, K.; Tokunaga, E.; Shibata, N. Chem. Commun. 2013, 49, 5510.
      (e) Fennewald, J. C.; Lipshutz, B. H. Green Chem. 2014, 16, 1097. (f) Cui, L.; Matusaki, Y.; Tada, N.; Miura, T.; Uno, B.; Itoh, A. Adv. Synth. Catal. 2013, 355, 2203.

    17. [17]

      (a) Umemoto, T. Chem. Rev. 1996, 96, 1757.
      (b) Prakash, G. K. S.; Hu, J. Acc. Chem. Res. 2007, 40, 921.
      (c) Prakash, G. K. S.; Yudin, A. K. Chem. Rev. 1997, 97, 757.
      (d) Shibata, N.; Matsnev, A.; Cahard, D. Beilstein J. Org. Chem. 2010, 6, 65.
      (e) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513.

    18. [18]

      Shi, G.; Shao, C.; Pan, S.; Yu, J.; Zhang, Y. Org. Lett. 2015, 17, 38.  doi: 10.1021/ol503189j

    19. [19]

      (a) Lopez, S. E.; Salazar, J. J. Fluorine Chem. 2013, 156, 73.
      (b) Rui, S.; Lei, L. Sci. China Chem. 2011, 54, 1670.
      (c) Rodríguez, N.; Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030.

    20. [20]

      Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.  doi: 10.1021/cr4002879

    21. [21]

      Matsui, K.; Tobita, E.; Ando, M.; Kondo, K. Chem. Lett. 1981, 12, 1719.
       

    22. [22]

      Hünig, S.; Bau, R.; Kemmer, M.; Meixner, H.; Metzenthin, T.; Peters, K.; Sinzger, K.; Gulbis, J. Eur. J. Org. Chem. 1998, 2, 335.
       

    23. [23]

      Austin, N. E.; Avenell, K. Y.; Boyfield, I.; Branch, C. L.; Hadley, M. S.; Jeffrey, P.; Johnson, C. N.; Macdonald, G. J.; Nash, D. J.; Riley, G. J.; Smith, A. B.; Stemp, G.; Thewlis, K. M.; Vong, A. K. K.; Wood, M. D. Bioorg. Med. Chem. Lett. 2001, 11, 685.  doi: 10.1016/S0960-894X(01)00037-3

    24. [24]

      Langlois, B. R.; Roques, N. J. Fluorine Chem. 2007, 128. 1318.  doi: 10.1016/j.jfluchem.2007.08.001

    25. [25]

      McReynolds, K. A.; Lewis, R. S.; Ackerman, L. K. G.; Dubinina, G. G.; Brennessel, W. W.; Vicic, D. A. J. Fluorine Chem. 2010, 131, 1108.  doi: 10.1016/j.jfluchem.2010.04.005

    26. [26]

      Li, Y.; Chen, T.; Wang, H.; Zhang, R.; Jin, K.; Wang, X.; Duan, C. Synlett 2011, 1713.
       

    27. [27]

      Schareina, T.; Wu, X.-F.; Zapf, A.; Cotte, A.; Gotta, M.; Beller, M. Top Catal. 2012, 55, 426.  doi: 10.1007/s11244-012-9824-0

    28. [28]

      Chen, M.; Buchwald, S. L. Angew. Chem., Int. Ed. 2013, 52, 11628.  doi: 10.1002/anie.201306094

    29. [29]

      Maleckis, A.; Sanford, M. S. Organometallics 2014, 33, 2653.  doi: 10.1021/om500398z

    30. [30]

      Lin, X.; Hou, C.; Li, H.; Weng, Z. Chem.-Eur. J. 2016, 22, 2075.  doi: 10.1002/chem.201504306

    31. [31]

      Torikai, K.; Koga, R.; Liu, X.; Umehara, K.; Kitano, T.; Watanabe, K.; Oishi, T.; Noguchi, H.; Shimohigashi, Y. Bioorg. Med. Chem. 2017, 25, 5216.  doi: 10.1016/j.bmc.2017.07.067

    32. [32]

      (a) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242.
      (b) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293.
      (c) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Chem. Rev. 2015, 115, 12138.
      (d) Song, G.; Li, X. Acc. Chem. Res. 2015, 48, 1007.
      (e) Guo, X.-X.; Gu, D.-W.; Wu, Z.; Zhang, W. Chem. Rev. 2015, 115, 1622.
      (f) Zheng, C.; You, S.-L. RSC Adv. 2014, 4, 6173.
      (g) Ackermann, L. Chem. Rev. 2011, 111, 1315.
      (h) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936.
      (i) Zhang, Y.; Shi, G.; Yu, J.-Q. Carbon-Carbon σ-Bond Formation via C—H Bond Functionalization in Comprehensive Organic Synthesis,2nd ed., Vol. 3, Eds.: Molander, G.; Knochel, P.,Elsevier, Oxford, 2014, pp. 1101~1209.

    33. [33]

      Grinberg, V. A.; Polishchuk, V. R.; German, L. S.; Kanevskii, L. S.; Vassiliev, Y. B. Izv. Akad. Nauk SSSR, Ser. Khim. 1978, 3, 673.

    34. [34]

      Sawada, H.; Nakayama, M.; Yoshida, M.; Yoshida, T.; Kamigata, N. J. Fluorine Chem. 1990, 46, 423.  doi: 10.1016/S0022-1139(00)82927-9

    35. [35]

      Lai, C.; Mallouk, T. E. J. Chem. Soc., Chem. Commun. 1993, 17, 1359.

    36. [36]

      Matsui, M.; Kondoh, S.; Shibata, K.; Muramatsu, H. Bull. Chem. Soc. Jpn. 1995, 68, 1042.  doi: 10.1246/bcsj.68.1042

    37. [37]

      Tanabe, Y.; Matsuo, N.; Ohno, N. J. Org. Chem. 1988, 53, 4583.

    38. [38]

      Depecker, C.; Marzouk, H.; Trevin, S.; Devynck, J. New J. Chem. 1999, 23, 739.  doi: 10.1039/a901305i

    39. [39]

      Beatty, J. W.; Douglas, J. J.; Cole, K. P.; Stephenson, C. R. J. Nat. Commun. 2015, 6, 7919.  doi: 10.1038/ncomms8919

    40. [40]

      Zhong, S.; Hafner, A.; Hussal, C.; Nieger, M.; Brase, S. RSC Adv. 2015, 5, 6255.  doi: 10.1039/C4RA13430C

    41. [41]

      Lin, J.; Li, Z.; Kan, J.; Huang, S.; Su, W.; Li, Y. Nat. Commun. 2017, 8, 1.  doi: 10.1038/s41467-016-0009-6

    42. [42]

      Yang, B.; Yu, D.; Xu, X.-H.; Qing, F.-L. ACS Catal. 2018, 8, 2839.  doi: 10.1021/acscatal.7b03990

    43. [43]

      (a) Parsons, A. T.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 9120.
      (b) Xu, J.; Fu, Y.; Luo, D.-F.; Jiang, Y.-Y.; Xiao, B.; Liu, Z.-J.; Gong, T.-J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 15300.
      (c) Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 16410.
      (d) Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X. Angew. Chem., Int. Ed. 2013, 52, 6962.

    44. [44]

      Brookes, C. J.; Coe, P. L.; Owen, D. M.; Pedler, A. E.; Tatlow, J. C. J. Chem. Soc., Chem. Commun. 1974, 9, 323.

    45. [45]

      Barton, D. H. R.; Lacher, B.; Zard, S. Z. Tetrahedron 1986, 42, 2325.  doi: 10.1016/S0040-4020(01)90613-1

    46. [46]

      Jablonski, L.; Joubert, J.; Billard, T.; Langlois, B. R. Synlett 2003, 230.

    47. [47]

      Chang, Y.; Cai, C. J. Fluorine Chem. 2005, 126, 937.  doi: 10.1016/j.jfluchem.2005.04.012

    48. [48]

      Arai, K.; Watts, K.; Wirth, T. ChemistryOpen 2014, 3, 23.  doi: 10.1002/open.201300039

    49. [49]

      Kawamura, S.; Sodeoka, M. Angew. Chem., Int. Ed. 2016, 55, 8740.  doi: 10.1002/anie.201604127

    50. [50]

      Valverde, E.; Kawamura, S.; Sekine, D.; Sodeoka, M. Chem. Sci. 2018, 9, 7115.  doi: 10.1039/C8SC02547A

    51. [51]

      Zhang, Y.; Li, Z.; Song, H.; Wang, B. Chin. J. Chem. 2018, 36, 635.  doi: 10.1002/cjoc.v36.7

  • 加载中
    1. [1]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    2. [2]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    3. [3]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    4. [4]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    5. [5]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    6. [6]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    7. [7]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    8. [8]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    9. [9]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    10. [10]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    11. [11]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    12. [12]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    13. [13]

      Yujing Chen Hongqun Ouyang Dan Zhao Yanyan Chu Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    16. [16]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    17. [17]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    18. [18]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    19. [19]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    20. [20]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

Metrics
  • PDF Downloads(84)
  • Abstract views(2677)
  • HTML views(579)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return