Citation: Yang Wencheng, Qi Xiaoxu, Chen Pinhong, Liu Guosheng. Palladium-Catalyzed Intramolecular Fluoroarylation of Alkenes[J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 122-128. doi: 10.6023/cjoc201810026 shu

Palladium-Catalyzed Intramolecular Fluoroarylation of Alkenes

  • Corresponding author: Chen Pinhong, pinhongchen@sioc.ac.cn Liu Guosheng, gliu@mail.sioc.ac.cn
  • Received Date: 20 October 2018
    Revised Date: 3 December 2018
    Available Online: 5 January 2018

    Fund Project: Project supported by he National Key R & D Program of China (973 Program, No. 2015CB856600), the National Natural Science Foundation of China (Nos. 21532009, 21672236, 21761142010, 21790330) and the Science Technology Commission of the Shanghai Municipality (Nos. 17QA1405200, 17JC1401200), and the Chinese Academy Sciences (Nos. XDB20000000, QYZDJSSW-SLH055) and the Youth Innovation Promotion Association (No.2018292)the Science Technology Commission of the Shanghai Municipality 17QA1405200the National Natural Science Foundation of China 21790330the National Natural Science Foundation of China 21532009the National Natural Science Foundation of China 21672236the Science Technology Commission of the Shanghai Municipality 17JC1401200the Chinese Academy Sciences QYZDJSSW-SLH055the Chinese Academy Sciences XDB20000000the Youth Innovation Promotion Association 2018292the National Natural Science Foundation of China 21761142010he National Key R & D Program of China (973 Program) 2015CB856600

Figures(3)

  • A novel palladium-catalyzed intramolecular fluoroarylation of alkenes has been developed, in which ArIF2 was employed as fluorine source as well as Ⅰ(Ⅲ) reagent to activate olefin, to deliver the fluoroarylation products from 4-aryl- 1-olefins in moderate to good yields. The current transformation presents a convenient method to provide fluorotetralins and fluorochromanes under mild conditions from alkenes tethered arenes.
  • 加载中
    1. [1]

      (a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (b) Wang, J.; Sánchez-Rosellyó, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
      (c) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.

    2. [2]

      For reviews, see:
      (a) Cahard, D.; Xu, X.; Couve-Bonnaire, S.; Pannecoucke, X. Chem. Soc. Rev. 2010, 39, 558.
      (b) Grushin, V. V. Acc. Chem. Res. 2010, 43, 160.
      (c) Liu, G. Org. Biomol. Chem. 2012, 6243.
      (d) Wolstenhulme, J. R.; Gouverneur, V. Acc. Chem. Res. 2014, 47, 3560.
      (e) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
      (f) Campbell, M. G.; Ritter, T. Chem. Rev. 2015, 115, 612.

    3. [3]

      For the selected examples on aminofluorination, see:
      (a) Wu. T.; Yin, G.; Liu, G. J. Am. Chem. Soc. 2009, 131, 16354.
      (b) Qiu, S.; Xu, T.; Zhou, J.; Guo, Y. Liu, G. J. Am. Chem. Soc. 2010, 132, 2856.
      (c) Kong, W.; Feige, P.; de Haro, T.; Nevado, C. Angew. Chem., Int. Ed. 2013, 52, 2469.
      (d) Li, Z.; Song, L.; Li, C. J. Am. Chem. Soc. 2013, 135, 4640.
      (e) Huang, H.-T.; Lacy, T. C.; Blachut, B.; Ortiz Jr, G. X.; Wang, Q. Org. Lett. 2013, 15, 1818.
      (f) Li, Z.; Zhang, C.; Zhu, L.; Liu, C.; Li, C. Org. Chem. Front. 2014, 1, 100.
      (g) Zhang, H.; Song, Y.; Zhao, J.; Zhang, J.; Zhang, Q. Angew. Chem., Int. Ed. 2014, 53, 11079.
      (h) Cui, J.; Jia, Q.; Feng, R.-Z.; Liu, S.-S.; He, T.; Zhang, C. Org. Lett. 2014, 16, 1442.
      (i) Lu, D.-F.; Liu, G.-S.; Zhu, C.-L.; Yuan, B.; Xu, H. Org. Lett. 2014, 16, 2912.
      (j) Yuan, W.; Szabo, K. J. Angew. Chem. Int. Ed. 2015, 54, 8533.
      (k) Lu, D.-F.; Zhu, C.-L.; Sears, J. D.; Xu, H. J. Am. Chem. Soc. 2016, 138, 11360.

    4. [4]

      For selected examples on oxyfluorination, see:
      (a) Wilkinson, S. C.; Lozano, O.; Schuler, M.; Pacheco, M. C.; Salmon, R.; Gouverneur, V. Angew. Chem., Int. Ed. 2009, 48, 7083.
      (b) Rauniyar, V.; Lackner, A. D.; Hamilton, G. L.; Toste, F. D. Science 2011, 334, 1681.
      (c) Peng, H.; Yuan, Z.; Wang, H.-Y., Guo, Y.-L.; Liu, G. Chem. Sci. 2013, 4, 3172.
      (d) Egami, H.; Asada, J.; Sato, K.; Hashizume, D.; Kawato, Y.; Hamashima, Y. J. Am. Chem. Soc. 2015, 137, 10132.
      (e) Geary, G. C.; Hope, E. G.; Stuart, A. M. Angew. Chem., Int. Ed. 2015, 54, 14911.

    5. [5]

      For selected examples on carbofluorination, see:
      (a) Cochrane, N. A.; Nguyen, H.; Gagne, M. R. J. Am. Chem. Soc. 2013, 135, 628.
      (b) Zhu, L.; Chen, H.; Wang Z.; Li, C. Org. Chem. Front. 2014, 1, 1299.
      (c) Wang, H.; Guo, L.-N.; Duan, X.-H. Chem. Commun. 2014, 50, 7382.
      (d) Liu, Z.; Chen, H.; Lv, Y.; Tan, X.; Shen, H.; Yu, H.-Z.; Li, C. J. Am. Chem. Soc. 2018, 140, 6169.

    6. [6]

      Other fluorination of alkenes, see:
      (a) Barker, T. J.; Boger, D. L. J. Am. Chem. Soc. 2012, 134, 13588.
      (b) Zhang, C.; Li, Z.; Zhu, L.; Yu, L.; Wang, Z.; Li, C. J. Am. Chem. Soc. 2013, 135, 14082.
      (c) Emer, E.; Pfeifer, L.; Brown, J. M.; Gouverneur, V. Angew. Chem., Int. Ed. 2014, 53, 4181.
      (d) Yuan, Z.; Wang, H.-Y.; Mu, X.; Chen, P.; Guo, Y.-L.; Liu, G. J. Am. Chem. Soc. 2015, 137, 2468.
      (e) Banik, S. M.; Medley, J. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 5000.
      (f) Molnár, I. G.; Gilmour, R. J. Am. Chem. Soc. 2016, 138, 5004.
      (g) Banik, S. M.; Medley, J. M.; Jacobsen, E. N. Science 2016, 353, 51.
      (h) Woerly, E. M.; Banik, S. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 13858.

    7. [7]

      (a) Talbot, E. P. A.; Fernandes, T. A.; McKenna, J. M.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 4101.
      (b) He, Y.; Yang, Z.; Thornbury, R. T.; Toste, F. D. J. Am. Chem. Soc. 2015, 137, 12207.
      (c) Miró, J.; de Pozo, C.; Toste, F. D.; Fustero, S. Angew. Chem., Int. Ed. 2016, 55, 9045.
      (d) Thornbury, R. T.; Saini, V.; Fernandes, T. A.; Santiago, C. B.; Talbot, E. P. A.; Sigman, M. S.; McKenna, J. M.; Toste, F. D. Chem. Sci. 2017, 8, 2890.

    8. [8]

      Tang, H.-J.; Lin, L.-Z.; Feng, C.; Loh, T.-P. Angew. Chem., Int. Ed. 2017, 56, 9872.  doi: 10.1002/anie.201705321

    9. [9]

      (a) Guo, R.; Yang, H.; Tang, P. Chem. Commun. 2015, 51, 8829.
      (b) Kindt, S.; Heinrich, M. R. Chem. Eur. J. 2014, 20, 15344.

    10. [10]

      Yin, G.; Mu, X.; Liu, G. Acc. Chem. Res. 2016, 49, 2413.  doi: 10.1021/acs.accounts.6b00328

    11. [11]

      (a) Li, M.; Yu, F.; Qi, X.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2016, 55, 13843.
      (b) Li, M.; Yu, F.; Chen, P.; Liu, G. J. Org. Chem. 2017, 82, 11682.
      (c) Qi, X.; Yu, F.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2017, 56, 12692.

    12. [12]

      (a) Taniguchi, K.; Nagano, M.; Hattori, K.; Tsubaki, K.; Okitsu, O.; Tabuchi, S. US 5763489, 1998.
      (b) Poirier, D. Anticancer Agents Med. Chem. 2009, 9, 642.

    13. [13]

      Ventre, S.; Petronijevic, F. R.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 5654.  doi: 10.1021/jacs.5b02244

    14. [14]

      (a) Kang, Y.-B.; Gade, L. H. J. Am. Chem. Soc. 2011, 133, 3658.
      (b) Izquierdo, S.; Essafi, S.; del Rosal, I.; Vidossich, P.; Pleixats, R.; Vallribera, A.; Ujaque, G.; Lledós, A.; Shafir, A. J. Am. Chem. Soc. 2016, 138, 12747.

    15. [15]

      Liu, R.; Lu, Z.-H.; Hu, X.-H.; Li, J.-L.; Yang, X.-J. Org. Lett. 2015, 17, 1489.  doi: 10.1021/acs.orglett.5b00376

    16. [16]

      (a) Qiu, S.; Xu, T.; Zhou, J.; Guo, Y.-L.; Liu, G. J. Am. Chem. Soc. 2010, 132, 2856.
      (b) Peng, H.; Yuan, Z.; Wang, H.-Y.; Guo, Y.-L.; Liu, G. Chem. Sci. 2013, 4, 3172.

    17. [17]

      Sharma, H.; Santra, S.; Debnath, J.; Antonio, T.; Reith, M.; Dutta, A. Bioorg. Med. Chem. 2014, 22, 311.

    18. [18]

      Choi, P. J.; Rathwell, D. C. K.; Brimble, M. A. Tetrahedron Lett. 2009, 50, 3245.  doi: 10.1016/j.tetlet.2009.02.030

    19. [19]

      Parrish, J. P.; Sudaresan, B.; Jung, K. W. Synth. Commun. 1999, 29, 4423.  doi: 10.1080/00397919908086606

    20. [20]

      Hanamoto, T.; Shindo, K.; Matsuoka, M.; Kiguchi, Y.; Kondo, M. J. Chem. Soc., Perkin Trans. 1 2000, 103.

  • 加载中
    1. [1]

      Yunqiang LiYongxian HuangSinuo LiHe HuangZhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051

    2. [2]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    3. [3]

      Kun TangFen SuShijie PanFengfei LuZhongfu LuoFengrui CheXingxing WuYonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495

    4. [4]

      Fan ChenXiaoyu ZhaoWeihang MiaoYingying LiYe YuanLingling Chu . Regio- and enantioselective hydrofluorination of internal alkenes via nickel-catalyzed hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(5): 110239-. doi: 10.1016/j.cclet.2024.110239

    5. [5]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    6. [6]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    7. [7]

      Er-Meng WangZiyi WangXu BanXiaowei ZhaoYanli YinZhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843

    8. [8]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    9. [9]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    10. [10]

      Chonglong HeYulong WangQuan-Xin LiZichen YanKeyuan ZhangShao-Fei NiXin-Hua DuanLe Liu . Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade. Chinese Chemical Letters, 2025, 36(5): 110253-. doi: 10.1016/j.cclet.2024.110253

    11. [11]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    12. [12]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    13. [13]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    14. [14]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    15. [15]

      Zhao GuYunhui YangSong YeCongyang Wang . 2,3-Arylacylation of allenes through synergetic catalysis of palladium and N-heterocyclic carbene. Chinese Chemical Letters, 2025, 36(5): 110334-. doi: 10.1016/j.cclet.2024.110334

    16. [16]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    17. [17]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    18. [18]

      Chen LiZiyuan ZhaoShouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128

    19. [19]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    20. [20]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

Metrics
  • PDF Downloads(11)
  • Abstract views(1156)
  • HTML views(132)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint