Citation: Fu Xiaolin, Sun Yan, Zhao Zhigang, Guo Yong, Chen Qingyun, Nian Baoyi. Synthesis of Alkyl Sulfate from α-Trifluoromethylbenzylbromide—An Extension of Sulfinatodehalogenation[J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 144-150. doi: 10.6023/cjoc201810022 shu

Synthesis of Alkyl Sulfate from α-Trifluoromethylbenzylbromide—An Extension of Sulfinatodehalogenation

  • Corresponding author: Sun Yan, sunyan@sioc.ac.cn Zhao Zhigang, zzg63129@163.com
  • Received Date: 18 October 2018
    Revised Date: 24 November 2018
    Available Online: 30 January 2018

    Fund Project: the Sanming Institute of Fluorochemical Industry FCIT201701BRProject supported by the National Natural Science Foundation of China (Nos. 21737004, 21672239, 21421002) and the Sanming Institute of Fluorochemical Industry (Nos. FCIT201704GR, FCIT201705GR, FCIT201701BR)the Sanming Institute of Fluorochemical Industry FCIT201705GRthe National Natural Science Foundation of China 21672239the National Natural Science Foundation of China 21737004the Sanming Institute of Fluorochemical Industry FCIT201704GRthe National Natural Science Foundation of China 21421002

Figures(3)

  • The sulfinatodehalogenation reaction is a common method of introducing a fluoroalkyl group. In this paper, the reaction of α-trifluoromethylbenzyl bromide under sulfinatodehalogenation conditions was investigated. It was found that the product was an sodium alkyl sulfate (ArCH(CF3)OSO3Na) instead of an sodium alkyl sulfinate (ArCH(CF3)SO2Na) which was normal produced. α-Trifluoromethylbenzyl bromide did not react with the olefin after its generation of a radical intermediate under sulfinatodehalogenation conditions even though an olefin was presented. Instead, the reaction directly gave an alkyl sulfinate, and then oxidized by air to provide a product as an alkyl sulfate.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

      (a) Miyake, Y.; Ota, S.-I.; Shibata, M.; Nakajima, K.; Nishibayashi, Y. Org. Biomol. Chem. 2014, 12, 5594.
      (b) Egami, H.; Ide, T.; Kawato, Y.; Hamashima, Y. Chem. Commun. 2015, 51, 16675.
      (c) Zhu, L.; Liu, S.; Douglas, J. T.; Altman, R. A. Chem. Eur. J. 2013, 19, 12800.
      (d) Kuninobu, Y.; Nagase, M.; Kanai, M. Angew. Chem., Int. Ed. 2015, 54, 10263.
      (e) Wang, X.; Song, S.; Jiao, N. Chin. J. Chem. 2018, 36, 213~216.

    5. [5]

      (a) Vuković, V. D.; Richmond, E.; Wolf, E.; Moran, J. Angew. Chem., Int. Ed. 2017, 56, 3085.
      (b) Prakash, G. K. S.; Paknia, F.; Thomas M.; Mathew, T.; Mlostoń, G.; Olah, G. A. Org. Lett. 2011, 13, 4128.

    6. [6]

      (a) Liang, Y.; Fu, G. C. J. Am. Chem. Soc. 2015, 137, 9523.
      (b) Liang, Y.; Fu, G. C. Angew. Chem., Int. Ed. 2015, 54, 9047.
      (c) Ryu, D.; Primer, D. N.; Tellis, J. C.; Molander, G. A. Chem. Eur. J. 2016, 22, 120.
      (d) Li, X.; Feng, Z.; Jiang, Z.-X.; Zhang, X. Org. Lett. 2015, 17, 5570.

    7. [7]

      (a) Gao, B.; Zhao, Y.; Hu, J. Angew. Chem., Int. Ed. 2015, 54, 638.
      (b) Tang, H.-J.; Zhang, Y.-F.; Jiang, Y.-W.; Feng, C. Org. Lett. 2018, 20, 5190.
      (c) Tian, P.; Wang, C.-Q.; Cai, S.-H.; Song, S.; Ye, L.; Feng, C.; Loh, T.-P. J. Am. Chem. Soc. 2016, 138, 15869.
      (d) Tang, H.-J.; Lin, L.-Z.; Feng, C.; Loh T.-P. Angew. Chem., Int. Ed. 2017, 56, 9872.

    8. [8]

      (a) Long, Z.-Y., Chen, Q.-Y. Tetrahedron Lett. 1998, 39, 8487.
      (b) Long, Z.-Y.; Chen, Q.-Y. J. Org. Chem. 1999, 64, 4775.

    9. [9]

      (a) Li, L.; Huang, M.; Liu, C.; Xiao, J.-C.; Chen, Q.-Y.; Guo, Y.; Zhao, Z.-G. Org. Lett. 2015, 17, 4714.
      (b) Huang M.; Li, L.; Zhao, Z.-G.; Chen, Q.-Y.; Guo, Y. Synth. Catal. 2015, 47, 3891.
      (c) Kreis, L. M.; Krautwald, S.; Pfeiffer, N.; Martin, R. E.; Carreira, E. M. Org. Lett. 2013, 15, 1634.
      (d) Rong, J.; Ni, C.; Wang, Y.; Kuang, C.; Gu, Y.; Hu, J. Acta Chim. Sinica 2017, 75, 105.

    10. [10]

      Huan, F., Chen, Q.-Y., Guo, Y. J. Org. Chem. 2016, 81, 7051.  doi: 10.1021/acs.joc.6b00930

    11. [11]

      (a) Kudova, E.; Chodounska, H.; Slavikova, B.; Budesinsky, M.; Nekardova, M.; Vyklicky, V.; Krausova, B.; Svehla, P.; Vyklicky, L. J. Med. Chem. 2015, 58, 5950.
      (b) Burlingham, B. T.; Pratt L. M.; Davidson, E. R.; Shiner, V. J.; Jr.; Fong, J.; Widlanski, T. S. J. Am. Chem. Soc. 2003, 125, 13036.

    12. [12]

      Kamiyama, H.; Kubo, Y.; Sato, H.; Yamamoto, N.; Fukuda, T.; Ishibashi, F.; Iwao, M. Bioorg. Med. Chem. 2011, 19, 7541.

    13. [13]

      (a) Stastnaa, E.; Chodounskaa, H.; Pouzara, V.; Kaprasa, V.; Borovskaa, J.; Caisc, O.; Jr, L. V. Steroids 2009, 74, 256.
      (b) Nishimura, Y.; Shudo, H.; Seto, H.; Hoshino, Y.; Miura, Y. Bioorg. Med. Chem. Lett. 2013, 23, 6390.

    14. [14]

      (a) Nie, L.; S. Yao; Dong, B.; Li, X.-l.; Song, H. J. Mol. Liq. 2017, 240, 152.
      (b) Desoky, A. Y.; Hendel, J.; Ingram L.; Taylor, S. D. Tetrahedron 2011, 67, 1281.
      (c) Beichel, W.; Panzer, J. M. U.; Hä tty, J. Ye, X.; Himmel, D.; Krossing, I. Angew. Chem., Int. Ed. 2014, 53, 6637.

    15. [15]

      Dolbier, W. R.; Jr. Guide to Fluorine NMR for Organic Chemists, John Wiley & Sons, Inc., New Jersey, 2009, p. 143.

    16. [16]

      (a) Brunelle, J. A.; Letendre, L. J.; Weltin, E. E.; Brown, J. H.; Bushweller, C. H. J. Phys. Chem. 1992, 96, 9225.
      (b) Tordeux, M.; Wakselman, C.; Jarjayes, O.; Béguin, C. G. Magn. Reson. Chem. 2001, 39, 301.

    17. [17]

      Wang, R.; Jiang, L.; Yi, W. J. Org. Chem. 2018, 83, 7789.  doi: 10.1021/acs.joc.8b00676

    18. [18]

      Dneprovskii, A. S.; Eliseenkov, E. V.; Mil'tsov, S. A. J. Org. Chem. 1982, 2, 365.

    19. [19]

      Yusuke, Y.; Shoji, H.; Hisanori, S. Tetrahedron 2010, 2, 473.

    20. [20]

      Okano, T; Fumoto, M; Kusukawa, T; Fujita, M. J. Fluorine Chem. 2002, 9, 91.

    21. [21]

      Andreea, A. O.; Daweon, R.; Ioana, A.; Gary A, M. Angew. Chem., Int. Ed. 2013, 51, 13901.

    22. [22]

      Lo, W. C.; Hunter, J. E.; Watson, G. B.; Patny, A.; Iyer, P. S.; Boruwa, J. US 9211280, 2015.

    23. [23]

      Sun, F.; Zhan, Y. CN 108341814, 2018.

  • 加载中
    1. [1]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    2. [2]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    3. [3]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    4. [4]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    5. [5]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    6. [6]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    7. [7]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    8. [8]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    9. [9]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    10. [10]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    11. [11]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    12. [12]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    13. [13]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    14. [14]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    15. [15]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    16. [16]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    17. [17]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    18. [18]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    19. [19]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    20. [20]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

Metrics
  • PDF Downloads(14)
  • Abstract views(1324)
  • HTML views(192)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return