Citation: Li Yuanyuan, Wang Yuanjian, Zhu Lei, Qu Lingbo, Lan Yu. Theoretical Advances on the Mechanism of Transition Metal-Catalyzed C—F Functionalization[J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 38-46. doi: 10.6023/cjoc201810020 shu

Theoretical Advances on the Mechanism of Transition Metal-Catalyzed C—F Functionalization

  • Corresponding author: Lan Yu, lanyu@cqu.edu.cn
  • Received Date: 18 October 2018
    Revised Date: 5 December 2018
    Available Online: 7 January 2018

    Fund Project: the University-Level Key Projects of Chongqing University of Education KY201704Athe National Natural Science Foundation of China 21822303the Project of Science and Technology Collaborative Innovation Platform Construction of Chongqing University of Education 2017XJPT01Project supported by the National Natural Science Foundation of China (Nos. 21822303, 21772020), the Basic and Frontier Research Project of Chongqing Science and Technology Commission (No. cstc2018jcyjAX0827), the Project of Science and Technology Collaborative Innovation Platform Construction of Chongqing University of Education (No. 2017XJPT01), the University-Level Key Projects of Chongqing University of Education (No. KY201704A), the Scientific Research Foundation of Chongqing University of Education (No. 2017BSRC001)the Scientific Research Foundation of Chongqing University of Education 2017BSRC001the Basic and Frontier Research Project of Chongqing Science and Technology Commission cstc2018jcyjAX0827the National Natural Science Foundation of China 21772020

Figures(12)

  • Organic fluorine chemistry has attracted considerable attention due to its unique character in the field of materials science, catalytic chemistry, medicine, fine chemicals and biochemistry, which majorly focus on the construction and cleavage of carbon-fluorine bonds. The transition metals are introduced to allow new possibilities for activating carbon-fluorine bonds and are gradually becoming an alternative way to synthesize numerous complex organics containing fluorine. In this review, the recent works on the theoretical mechanistic study for transition metals mediated carbon-fluorine bonds activation and cleavage are summarized. Meanwhile, the general modes of carbon-fluorine bonds activation have been concluded systematically, including the oxidative addition of carbon-fluorine bonds to transition metals, transition-metal-activated nucleophilic substitution, SN2 type activation of carbon(sp3)-fluorine bonds and β-fluorine elimination, etc. The theoretical calculation shows that the reaction could be proceed by an oxidation addition mode, when the zero-valent nickel catalyst with strong reducibility is employed. However, if a zero-valent platinum catalyst is used, oxidation addition only occurs at extra activated carbon-fluorine bonds. In the reduction of polyfluorinated aromatic hydrocarbons by hydrogenated metal species, aromatic nucleophilic substitution between hydride and polyfluorinated aromatic hydrocarbons could occur to realize the activation of carbon-fluoride bonds. For carbon(sp3)-fluorine bonds, if "hard" Lewis base such as lithium or magnesium salt is employed, the carbon(sp3)-fluorine bonds can be activated via bimolecular nucleophilic substitution (SN2). In addition, β-fluoride elimination is also frequently proposed in transition metal-catalyzed C—F functionalizations.
  • 加载中
    1. [1]

      Brown, J. M.; Gouverneur, V. Angew. Chem., Int. Ed. 2009, 48, 8610.  doi: 10.1002/anie.v48:46

    2. [2]

      Furuya, T.; Klein, J. E. M. N.; Ritter, T. Synthesis 2010, 1804.

    3. [3]

      Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470.  doi: 10.1038/nature10108

    4. [4]

      Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.  doi: 10.1002/anie.v52.32

    5. [5]

      Clark, J. H.; Wails, D.; Bastock, T. W. Aromatic Fluorination, CRC Press, Boca Raton, FL, 1996.

    6. [6]

      Kirsch, P. Modern Fluoroorganic Chemistry:Synthesis, Reactivity, Applications, Wiley, Weinheim, Germany, 2004.

    7. [7]

      Zeng, Z.; Zhang, T.; Yue, X. Y.; Zhang, H.; Bai, R. P.; Lan, Y. Sci. Sin. Chim. 2018, 48, 736(in Chinese).

    8. [8]

      Doherty, N. M.; Hoffmann, N. W. Chem. Rev. 1991, 91, 553.  doi: 10.1021/cr00004a005

    9. [9]

      Torrens, H. Coord. Chem. Rev. 2005, 249, 1957.  doi: 10.1016/j.ccr.2005.01.025

    10. [10]

      Kiplinger, J. L.; Richmond, T. G.; Osterberg, C. E. Chem. Rev. 1994, 94, 373.  doi: 10.1021/cr00026a005

    11. [11]

      Möller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.  doi: 10.1126/science.1131943

    12. [12]

      Wang, J.; Roselló, M. S.; Ace a, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.  doi: 10.1021/cr4002879

    13. [13]

      O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308.  doi: 10.1039/B711844A

    14. [14]

      Wang, L. Ph.D. Dissertation, Shandong University, Ji'nan 2016 (in Chinese).

    15. [15]

      McGrady, J. E.; Perutz, R. N.; Reinhold, M. J. Am. Chem. Soc. 2004, 126, 5268.  doi: 10.1021/ja0396908

    16. [16]

      Bosque, R.; Clot, E.; Fantacci, S.; Maseras, F.; Eisenstein, O.; Perutz, R. N.; Renkema, K. B.; Caulton, K. G. J. Am. Chem. Soc. 1998, 120, 12634.  doi: 10.1021/ja9824573

    17. [17]

      Jasim, N. A.; Perutz, R. N.; Whitwood, A. C.; Braun, T.; Izundu, J.; Neumann, B.; Rothfeld, S.; Stammler, H. G. Organometallics 2004, 23, 6140.  doi: 10.1021/om049448p

    18. [18]

      Cronin, L.; Higgitt, C. L.; Karch, R.; Perutz, R. N. Organometallics 1997, 16, 4920.  doi: 10.1021/om9705160

    19. [19]

      Vela, J.; Smith, J. M.; Yu, Y.; Ketterer, N. A.; Flaschenriem, C. J.; Lachicotte, R. J.; Holland, P. L. J. Am. Chem. Soc. 2005, 127, 7857  doi: 10.1021/ja042672l

    20. [20]

      Lindup, R. J.; Marder, T. B.; Perutz, R. N.; Whitwood, A. C. Chem. Commun. 2007, 3664.

    21. [21]

      Lin, Y.; Zhu, L.; Lan, Y.; Rao, Y. Chem.-Eur. J. 2015, 21, 14937.  doi: 10.1002/chem.201502140

    22. [22]

      Shan, C. H.; Luo, X. L.; Qi, X. T.; Liu, S.; Li, Y. Z.; Lan, Y. Organometallics 2016, 35, 1440.  doi: 10.1021/acs.organomet.6b00064

    23. [23]

      Liu, R. R.; Zhu, L.; Hu, J. P.; Lu, C. J.; Gao, J. R.; Lan, Y.; Jia, Y. X. Chem. Commun. 2017, 53, 5890.  doi: 10.1039/C7CC01015J

    24. [24]

      Ye, J. H.; Zhu, L.; Yan, S. S.; Miao, M.; Zhang, X. C.; Zhou, W. J.; Li, J.; Lan, Y.; Yu, D. G. ACS Catal. 2017, 7, 8324.  doi: 10.1021/acscatal.7b02533

    25. [25]

      Kang, K.; Liu, S. S.; Xu, T.; Wang, D. C.; Leng, X. B.; Bai, R. P.; Lan, Y.; Shen, Q. L. Organometallics 2017, 36, 4727.  doi: 10.1021/acs.organomet.7b00588

    26. [26]

      Li, Y. Z.; Zou, L. F.; Bai, R. P.; Lan, Y. Org. Chem. Front. 2018, 5, 615.  doi: 10.1039/C7QO00850C

    27. [27]

      Zhu, L.; Ye, J. H.; Duan, M.; Qi, X. T.; Yu, D. G.; Bai, R. P.; Lan, Y. Org. Chem. Front. 2018, 5, 633.  doi: 10.1039/C7QO00838D

    28. [28]

      Yuan, C. C.; Zhu, L.; Zeng, R. S.; Lan, Y.; Zhao, Y. S. Angew. Chem., Int. Ed. 2018, 57, 1277.  doi: 10.1002/anie.201711221

    29. [29]

      Braun, T.; Cronin, L.; Higgitt, C. L.; McGrady, J. E.; Perutz, R. N.; Reinhold, M. New J. Chem. 2001, 25, 19.  doi: 10.1039/b006368l

    30. [30]

      Braun, T.; Perutz, R. N. Chem. Commun. 2002, 2749.

    31. [31]

      Wang, T. L.; Yu, Z. Y.; Hoon, D. L.; Huang, K. W.; Lan, Y.; Lu, Y. X. Chem. Sci. 2015, 6, 4912.  doi: 10.1039/C5SC01614B

    32. [32]

      Duan, M.; Zhu, L.; Qi, X. T.; Yu, Z. Y.; Li, Y. Z.; Bai, R. P.; Lan, Y. Sci. Rep. 2017, 7, 7619.  doi: 10.1038/s41598-017-07863-9

    33. [33]

      Braun, T.; Perutz, R. N.; Sladek, M. I. Chem. Commun. 2001, 2254.

    34. [34]

      Burdeniuc, J.; Jedlicka, B.; Crabtree, R. H. Chem. Ber. 1997, 130, 145.  doi: 10.1002/(ISSN)1099-0682

    35. [35]

      Wilhelm, R.; Widdowson, D. A. J. Chem. Soc., Perkin Trans. 1 2000, 3808.

    36. [36]

      Braun, T.; Noveski, D.; Ahijado, M.; Wehmeier, F. Dalton Trans. 2007, 3820.

    37. [37]

      Kiso, Y.; Tamao, K.; Kumada, M. J. Organomet. Chem. 1973, 50, 12.  doi: 10.1016/S0022-328X(00)95063-0

    38. [38]

      Tamao, K.; Sumitani, K.; Kiso, Y.; Zembayashi, M.; Fujioka, A.; Kodama, S.; Nakajima, I.; Minato, A.; Kumada, M. Bull. Chem. Soc. Jpn. 1976, 49, 1958.  doi: 10.1246/bcsj.49.1958

    39. [39]

      Nishimine, T.; Taira, H.; Tokunaga, E.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2016, 55, 359.  doi: 10.1002/anie.201508574

    40. [40]

      Okusu, S.; Okazaki, H.; Tokunaga, E.; Soloshonok, V. A.; Shibata, N. Angew. Chem., Int. Ed. 2016, 55, 6744.  doi: 10.1002/anie.201601928

    41. [41]

      Zhang, X.; Liu, Y.; Chen, G.; Pei, G.; Bi, S. Organometallics 2017, 36, 3739.  doi: 10.1021/acs.organomet.7b00514

    42. [42]

      Doi, R.; Kikushima, K.; Ohashi, M.; Ogoshi, S.; J. Am. Chem. Soc. 2015, 137, 3276.  doi: 10.1021/ja511730k

    43. [43]

      Ohashi, M.; Shibata, M.; Ogoshi, S. Angew. Chem. 2014, 126, 13796.  doi: 10.1002/ange.201408467

    44. [44]

      Ohashi, M.; Kambara, T.; Hatanaka, T.; Saijo, H.; Doi, R.; Ogoshi, S. J. Am. Chem. Soc. 2011, 133, 3256.  doi: 10.1021/ja109911p

    45. [45]

      Qi, X. T.; Li, Y. Z.; Bai R.P.; Lan, Y. Acc. Chem. Res. 2017, 50, 2799.  doi: 10.1021/acs.accounts.7b00400

    46. [46]

      Liu, S.; Qi, X. T.; Qu, L. B.; Bai, R. P.; Lan, Y. Catal. Sci. Technol. 2018, 8, 1645.  doi: 10.1039/C7CY02367G

    47. [47]

      Li, Y. Y.; Chen, Y. H.; Shan, C. H.; Zhang, J.; Xu, D. D.; Bai, R. P.; Qu, L. B.; Lan, Y. Chin. J. Org. Chem. 2018, 38, 1885(in Chinese).
       

    48. [48]

      Li, Y. Z.; Liu, S.; Qi, Z. S.; Qi, X. T.; Li, X. W.; Lan, Y. Chem.-Eur. J. 2015, 21, 10131.  doi: 10.1002/chem.201500290

    49. [49]

      Luo, Y. X.; Liu, S.; Xu, D.; Qu, L. B.; Luo, X. L.; Bai, R. P.; Lan, Y. J. Organomet. Chem. 2018, 864, 148.  doi: 10.1016/j.jorganchem.2018.03.016

    50. [50]

      Hofmann, P.; Unfried, G. Chem. Ber. 1992, 125, 659.  doi: 10.1002/(ISSN)1099-0682

    51. [51]

      Belt, S. T.; Helliwell, M.; Jones, W. D.; Partridge, M. G.; Perutz, R. N. J. Am. Chem. Soc. 1993, 115, 1429.  doi: 10.1021/ja00057a028

    52. [52]

      Schaub, T.; Radius, U. Chem.-Eur. J. 2005, 11, 5024.  doi: 10.1002/(ISSN)1521-3765

    53. [53]

      Belt, S. T.; Duckett, S. B.; Helliwell, M.; Perutz, R. N. J. Chem. Soc., Chem. Commun. 1989, 928.

    54. [54]

      Jasim, N. A.; Perutz, R. N. J. Am. Chem. Soc. 2000, 122, 8685.  doi: 10.1021/ja0010913

    55. [55]

      Braun, T.; Cronin, L.; Higgitt, C. L.; McGrady, J. E.; Perutz, R. N.; Reinhold, M. New J. Chem. 2001, 25, 19.  doi: 10.1039/b006368l

    56. [56]

      Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119.  doi: 10.1021/cr800388c

    57. [57]

      Fuchibe, K.; Ohshima, Y.; Mitomi, K.; Akiyama, T. J. Fluorine Chem. 2007, 128, 1158.  doi: 10.1016/j.jfluchem.2007.06.003

    58. [58]

      Braun, T.; Noveski, D.; Ahijado, M. Wehmeier, F. Dalton Trans. 2007, 3820.

    59. [59]

      Meier, G.; Braun, T. Angew. Chem., Int. Ed. 2009, 48, 1546.  doi: 10.1002/anie.200805237

    60. [60]

      Braun, T.; Perutz, R. N. Chem. Commun. 2002, 2749.

    61. [61]

      Shan, C. H.; Zhu, L.; Qu, L. B.; Bai, R. P.; Lan, Y. Chem. Soc. Rev. 2018, 47, 7552.  doi: 10.1039/C8CS00036K

    62. [62]

      Shan, C. H.; Zhong, K. B.; Qi, X. T.; Xu. D. D.; Qu, L. B.; Bai, R. P.; Lan, Y. Org. Chem. Front. 2018, 5, 3178.  doi: 10.1039/C8QO00699G

    63. [63]

      Chen, C. H.; Luo, Y. X.; Fu, L.; Chen, P. H.; Lan, Y.; Liu, G. S. J. Am. Chem. Soc. 2018, 140, 1207.  doi: 10.1021/jacs.7b11470

    64. [64]

      Zhang, H.; Wang, H. Y.; Luo, Y. X.; Chen, C. H.; Gao, Y. M.; Chen, P. H.; Guo, Y. L.; Lan, Y.; Liu, G. S. ACS Catal. 2018, 8, 2173.  doi: 10.1021/acscatal.7b03220

    65. [65]

      Yin, Y. Z.; Yue, X. Y.; Zhong, Q.; Jiang, H. M.; Bai, R. P.; Lan, Y.; Zhang, H. Adv. Synth. Catal. 2018, 360, 1639.  doi: 10.1002/adsc.v360.8

    66. [66]

      Yuan, C. C.; Zhu, L.; Chen, C. P.; Chen, X. L.; Yang, Y.; Lan, Y.; Zhao, Y. S. Nat. Commun. 2018, 9, 1189.  doi: 10.1038/s41467-018-03341-6

    67. [67]

      Yao, W. J.; Yu, Z. Y.; Wen, S.; Ni, H. Z.; Ullah, N.; Lan, Y.; Lu, Y. X. Chem. Sci. 2017, 8, 5196.  doi: 10.1039/C7SC00952F

    68. [68]

      Yu, Z. Y.; Lan, Y. J. Org. Chem. 2013, 78, 11501.  doi: 10.1021/jo402070f

    69. [69]

      Yue, X. Y.; Shan, C. H.; Qi, X. T.; Luo, X. L.; Zhu, L.; Zhang, T.; Li, Y. Y.; Li, Y. Z.; Bai, R. P.; Lan, Y. Dalton Trans. 2018, 47, 1819.  doi: 10.1039/C7DT04084A

    70. [70]

      Li, J. J.; Zhang, D. J.; Sun, H. J.; Li, X. Y. Org. Biomol. Chem. 2014, 12, 1897.  doi: 10.1039/C3OB42384K

    71. [71]

      Reade, S. P.; Mahon, M. F.; Whittlesey, M. K. J. Am. Chem. Soc. 2009, 131, 1861.

    72. [72]

      Murphy, E. F.; Murugavel, R.; Roesky, H. W. Chem. Rev. 1997, 97, 3425.  doi: 10.1021/cr960365v

    73. [73]

      Torrens, H. Coord. Chem. Rev. 2005, 249, 1957.  doi: 10.1016/j.ccr.2005.01.025

    74. [74]

      Vela, J.; Smith, J. M.; Yu, Y.; Ketterer, N. A.; Flaschenriem, C. J.; Lachicotte, R. J.; Holland, P. L. J. Am. Chem. Soc. 2005, 127, 7857.  doi: 10.1021/ja042672l

    75. [75]

      Fahey, D. R.; Mahan, J. E. J. Am. Chem. Soc. 1977, 99, 2501.  doi: 10.1021/ja00450a017

    76. [76]

      Fahey, D. R.; Mahan, J. E. J. Am. Chem. Soc. 1977, 99, 522.

    77. [77]

      Reinhold, M.; McGrady, J. E.; Perutz, R. N. J. Am. Chem. Soc. 2004, 126, 5268.  doi: 10.1021/ja0396908

    78. [78]

      Nova, A.; Erhardt, S.; Jasim, N. A. Perutz, R. N.; Macgregor, S. A.; McGrady, J. E.; Whitwood, A. C. J. Am. Chem. Soc. 2008, 130, 15499.  doi: 10.1021/ja8046238

    79. [79]

      Schaub, T.; Fischer, P.; Steffen, A.; Braun, T.; Radius, U.; Mix, A. J. Am. Chem. Soc. 2008, 130, 9304.  doi: 10.1021/ja074640e

    80. [80]

      Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Acc. Chem. Res. 1995, 28, 154.  doi: 10.1021/ar00051a009

    81. [81]

      Jasim, N. A.; Perutz, R. N.; Whitwood, A. C.; Braun, T.; Izundu, J.; Neumann, B.; Rothfeld, S.; Stammler, H. G. Organometallics 2004, 23, 6140.  doi: 10.1021/om049448p

    82. [82]

      Macgregor, S. A.; Roe, D. C.; Marshall, W. J.; Bloch, K. M.; Bakhmutov, V. I.; Grushin, V. V. J. Am. Chem. Soc. 2005, 127, 15304.  doi: 10.1021/ja054506z

    83. [83]

      Kozuch, S.; Amatore, C.; Jutand, A.; Shaik, S. Organometallics 2005, 24, 2319.  doi: 10.1021/om050160p

    84. [84]

      Blum, O.; Frolow, F.; Milstein, D. J. Chem. Soc., Chem. Commun. 1991, 258.

    85. [85]

      Su, M.; Chu, S. Inorg. Chem. 1998, 37, 3400.  doi: 10.1021/ic970320s

    86. [86]

      Erhardt, S.; Macgregor, S. A. J. Am Chem. Soc. 2008, 130, 15490.  doi: 10.1021/ja804622j

    87. [87]

      Johnson, S. A.; Mroz, N. M.; Valdizon, R.; Murray, S. Organometallics 2011, 30, 441.  doi: 10.1021/om100699d

    88. [88]

      McKay, D.; Riddlestone, I. M.; Macgregor, S. A.; Mahon, M. F.; Whittlesey, M. K. ACS Catal. 2015, 5, 776.  doi: 10.1021/cs501644r

    89. [89]

      Yoshikai, N.; Matsuda, H.; Nakamura, E. J. Am. Chem. Soc. 2009, 131, 9590.  doi: 10.1021/ja903091g

    90. [90]

      Macgregor, S. A.; McKay, D.; Panetier, J. A.; Whittlesey, M. K. Dalton Trans. 2013, 42, 7386.  doi: 10.1039/c3dt32962c

    91. [91]

      Jaiswal, A. K.; Goh, K. K. K.; Sung, S.; Young, R. D. Org. Lett. 2017, 19, 1934.  doi: 10.1021/acs.orglett.7b00712

    92. [92]

      Jia, X.; Guo, P.; Duan, J.; Shu, X. Chem. Sci. 2018, 9, 640.  doi: 10.1039/C7SC03140H

    93. [93]

      Honda, K.; Harris, T. V.; Hatanaka, M.; Morokuma, K.; Mikami K.; Chem.-Eur. J. 2016, 22, 8796.  doi: 10.1002/chem.201601090

    94. [94]

      Erickson, L. W.; Lucas, E. L.; Tollefson, E. J.; Jarvo, E. R. J. Am. Chem. Soc. 2016, 138, 14006.  doi: 10.1021/jacs.6b07567

    95. [95]

      Xu, Z. Y.; Yang, Y. N.; Jiang, J. L.; Fu, Y. Organometallics 2018, 37, 1114.  doi: 10.1021/acs.organomet.7b00894

    96. [96]

      Zell, T.; Schaub, T.; Radacki, K.; Radius, U. Dalton Trans. 2011, 40, 1852.  doi: 10.1039/c0dt01442g

    97. [97]

      Ichitsuka, T.; Fujita, T.; Arita, T.; Ichikawa, J. Angew. Chem., Int. Ed. 2014, 53, 7564.  doi: 10.1002/anie.201402695

    98. [98]

      Ichitsuka, T.; Fujita, T.; Ichikawa, J. ACS Catal. 2015, 5, 5947.  doi: 10.1021/acscatal.5b01463

    99. [99]

      Zhang, X. M.; Liu, Y. X.; Chen, G.; Pei, G. J.; Bi, S. W. Organometallics 2017, 36, 3739.  doi: 10.1021/acs.organomet.7b00514

    100. [100]

      Chen, W. J.; Xu, R. N.; Lin, W. M.; Sun, X. J.; Wang, B.; Wu, Q. H.; Huang, X. Front. Chem. 2018, 6, 319.  doi: 10.3389/fchem.2018.00319

  • 加载中
    1. [1]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    2. [2]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    3. [3]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    4. [4]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    5. [5]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    6. [6]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    7. [7]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    8. [8]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    9. [9]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    10. [10]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    11. [11]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    12. [12]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    13. [13]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    14. [14]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    15. [15]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    16. [16]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    17. [17]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    18. [18]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    19. [19]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

Metrics
  • PDF Downloads(52)
  • Abstract views(2492)
  • HTML views(583)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return