Theoretical Advances on the Mechanism of Transition Metal-Catalyzed C—F Functionalization
- Corresponding author: Lan Yu, lanyu@cqu.edu.cn
Citation:
Li Yuanyuan, Wang Yuanjian, Zhu Lei, Qu Lingbo, Lan Yu. Theoretical Advances on the Mechanism of Transition Metal-Catalyzed C—F Functionalization[J]. Chinese Journal of Organic Chemistry,
;2019, 39(1): 38-46.
doi:
10.6023/cjoc201810020
Brown, J. M.; Gouverneur, V. Angew. Chem., Int. Ed. 2009, 48, 8610.
doi: 10.1002/anie.v48:46
Furuya, T.; Klein, J. E. M. N.; Ritter, T. Synthesis 2010, 1804.
Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470.
doi: 10.1038/nature10108
Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
doi: 10.1002/anie.v52.32
Clark, J. H.; Wails, D.; Bastock, T. W. Aromatic Fluorination, CRC Press, Boca Raton, FL, 1996.
Kirsch, P. Modern Fluoroorganic Chemistry:Synthesis, Reactivity, Applications, Wiley, Weinheim, Germany, 2004.
Zeng, Z.; Zhang, T.; Yue, X. Y.; Zhang, H.; Bai, R. P.; Lan, Y. Sci. Sin. Chim. 2018, 48, 736(in Chinese).
Doherty, N. M.; Hoffmann, N. W. Chem. Rev. 1991, 91, 553.
doi: 10.1021/cr00004a005
Torrens, H. Coord. Chem. Rev. 2005, 249, 1957.
doi: 10.1016/j.ccr.2005.01.025
Kiplinger, J. L.; Richmond, T. G.; Osterberg, C. E. Chem. Rev. 1994, 94, 373.
doi: 10.1021/cr00026a005
Möller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
doi: 10.1126/science.1131943
Wang, J.; Roselló, M. S.; Ace a, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
doi: 10.1021/cr4002879
O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308.
doi: 10.1039/B711844A
Wang, L. Ph.D. Dissertation, Shandong University, Ji'nan 2016 (in Chinese).
McGrady, J. E.; Perutz, R. N.; Reinhold, M. J. Am. Chem. Soc. 2004, 126, 5268.
doi: 10.1021/ja0396908
Bosque, R.; Clot, E.; Fantacci, S.; Maseras, F.; Eisenstein, O.; Perutz, R. N.; Renkema, K. B.; Caulton, K. G. J. Am. Chem. Soc. 1998, 120, 12634.
doi: 10.1021/ja9824573
Jasim, N. A.; Perutz, R. N.; Whitwood, A. C.; Braun, T.; Izundu, J.; Neumann, B.; Rothfeld, S.; Stammler, H. G. Organometallics 2004, 23, 6140.
doi: 10.1021/om049448p
Cronin, L.; Higgitt, C. L.; Karch, R.; Perutz, R. N. Organometallics 1997, 16, 4920.
doi: 10.1021/om9705160
Vela, J.; Smith, J. M.; Yu, Y.; Ketterer, N. A.; Flaschenriem, C. J.; Lachicotte, R. J.; Holland, P. L. J. Am. Chem. Soc. 2005, 127, 7857
doi: 10.1021/ja042672l
Lindup, R. J.; Marder, T. B.; Perutz, R. N.; Whitwood, A. C. Chem. Commun. 2007, 3664.
Lin, Y.; Zhu, L.; Lan, Y.; Rao, Y. Chem.-Eur. J. 2015, 21, 14937.
doi: 10.1002/chem.201502140
Shan, C. H.; Luo, X. L.; Qi, X. T.; Liu, S.; Li, Y. Z.; Lan, Y. Organometallics 2016, 35, 1440.
doi: 10.1021/acs.organomet.6b00064
Liu, R. R.; Zhu, L.; Hu, J. P.; Lu, C. J.; Gao, J. R.; Lan, Y.; Jia, Y. X. Chem. Commun. 2017, 53, 5890.
doi: 10.1039/C7CC01015J
Ye, J. H.; Zhu, L.; Yan, S. S.; Miao, M.; Zhang, X. C.; Zhou, W. J.; Li, J.; Lan, Y.; Yu, D. G. ACS Catal. 2017, 7, 8324.
doi: 10.1021/acscatal.7b02533
Kang, K.; Liu, S. S.; Xu, T.; Wang, D. C.; Leng, X. B.; Bai, R. P.; Lan, Y.; Shen, Q. L. Organometallics 2017, 36, 4727.
doi: 10.1021/acs.organomet.7b00588
Li, Y. Z.; Zou, L. F.; Bai, R. P.; Lan, Y. Org. Chem. Front. 2018, 5, 615.
doi: 10.1039/C7QO00850C
Zhu, L.; Ye, J. H.; Duan, M.; Qi, X. T.; Yu, D. G.; Bai, R. P.; Lan, Y. Org. Chem. Front. 2018, 5, 633.
doi: 10.1039/C7QO00838D
Yuan, C. C.; Zhu, L.; Zeng, R. S.; Lan, Y.; Zhao, Y. S. Angew. Chem., Int. Ed. 2018, 57, 1277.
doi: 10.1002/anie.201711221
Braun, T.; Cronin, L.; Higgitt, C. L.; McGrady, J. E.; Perutz, R. N.; Reinhold, M. New J. Chem. 2001, 25, 19.
doi: 10.1039/b006368l
Braun, T.; Perutz, R. N. Chem. Commun. 2002, 2749.
Wang, T. L.; Yu, Z. Y.; Hoon, D. L.; Huang, K. W.; Lan, Y.; Lu, Y. X. Chem. Sci. 2015, 6, 4912.
doi: 10.1039/C5SC01614B
Duan, M.; Zhu, L.; Qi, X. T.; Yu, Z. Y.; Li, Y. Z.; Bai, R. P.; Lan, Y. Sci. Rep. 2017, 7, 7619.
doi: 10.1038/s41598-017-07863-9
Braun, T.; Perutz, R. N.; Sladek, M. I. Chem. Commun. 2001, 2254.
Burdeniuc, J.; Jedlicka, B.; Crabtree, R. H. Chem. Ber. 1997, 130, 145.
doi: 10.1002/(ISSN)1099-0682
Wilhelm, R.; Widdowson, D. A. J. Chem. Soc., Perkin Trans. 1 2000, 3808.
Braun, T.; Noveski, D.; Ahijado, M.; Wehmeier, F. Dalton Trans. 2007, 3820.
Kiso, Y.; Tamao, K.; Kumada, M. J. Organomet. Chem. 1973, 50, 12.
doi: 10.1016/S0022-328X(00)95063-0
Tamao, K.; Sumitani, K.; Kiso, Y.; Zembayashi, M.; Fujioka, A.; Kodama, S.; Nakajima, I.; Minato, A.; Kumada, M. Bull. Chem. Soc. Jpn. 1976, 49, 1958.
doi: 10.1246/bcsj.49.1958
Nishimine, T.; Taira, H.; Tokunaga, E.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2016, 55, 359.
doi: 10.1002/anie.201508574
Okusu, S.; Okazaki, H.; Tokunaga, E.; Soloshonok, V. A.; Shibata, N. Angew. Chem., Int. Ed. 2016, 55, 6744.
doi: 10.1002/anie.201601928
Zhang, X.; Liu, Y.; Chen, G.; Pei, G.; Bi, S. Organometallics 2017, 36, 3739.
doi: 10.1021/acs.organomet.7b00514
Doi, R.; Kikushima, K.; Ohashi, M.; Ogoshi, S.; J. Am. Chem. Soc. 2015, 137, 3276.
doi: 10.1021/ja511730k
Ohashi, M.; Shibata, M.; Ogoshi, S. Angew. Chem. 2014, 126, 13796.
doi: 10.1002/ange.201408467
Ohashi, M.; Kambara, T.; Hatanaka, T.; Saijo, H.; Doi, R.; Ogoshi, S. J. Am. Chem. Soc. 2011, 133, 3256.
doi: 10.1021/ja109911p
Qi, X. T.; Li, Y. Z.; Bai R.P.; Lan, Y. Acc. Chem. Res. 2017, 50, 2799.
doi: 10.1021/acs.accounts.7b00400
Liu, S.; Qi, X. T.; Qu, L. B.; Bai, R. P.; Lan, Y. Catal. Sci. Technol. 2018, 8, 1645.
doi: 10.1039/C7CY02367G
Li, Y. Y.; Chen, Y. H.; Shan, C. H.; Zhang, J.; Xu, D. D.; Bai, R. P.; Qu, L. B.; Lan, Y. Chin. J. Org. Chem. 2018, 38, 1885(in Chinese).
Li, Y. Z.; Liu, S.; Qi, Z. S.; Qi, X. T.; Li, X. W.; Lan, Y. Chem.-Eur. J. 2015, 21, 10131.
doi: 10.1002/chem.201500290
Luo, Y. X.; Liu, S.; Xu, D.; Qu, L. B.; Luo, X. L.; Bai, R. P.; Lan, Y. J. Organomet. Chem. 2018, 864, 148.
doi: 10.1016/j.jorganchem.2018.03.016
Hofmann, P.; Unfried, G. Chem. Ber. 1992, 125, 659.
doi: 10.1002/(ISSN)1099-0682
Belt, S. T.; Helliwell, M.; Jones, W. D.; Partridge, M. G.; Perutz, R. N. J. Am. Chem. Soc. 1993, 115, 1429.
doi: 10.1021/ja00057a028
Schaub, T.; Radius, U. Chem.-Eur. J. 2005, 11, 5024.
doi: 10.1002/(ISSN)1521-3765
Belt, S. T.; Duckett, S. B.; Helliwell, M.; Perutz, R. N. J. Chem. Soc., Chem. Commun. 1989, 928.
Jasim, N. A.; Perutz, R. N. J. Am. Chem. Soc. 2000, 122, 8685.
doi: 10.1021/ja0010913
Braun, T.; Cronin, L.; Higgitt, C. L.; McGrady, J. E.; Perutz, R. N.; Reinhold, M. New J. Chem. 2001, 25, 19.
doi: 10.1039/b006368l
Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119.
doi: 10.1021/cr800388c
Fuchibe, K.; Ohshima, Y.; Mitomi, K.; Akiyama, T. J. Fluorine Chem. 2007, 128, 1158.
doi: 10.1016/j.jfluchem.2007.06.003
Braun, T.; Noveski, D.; Ahijado, M. Wehmeier, F. Dalton Trans. 2007, 3820.
Meier, G.; Braun, T. Angew. Chem., Int. Ed. 2009, 48, 1546.
doi: 10.1002/anie.200805237
Braun, T.; Perutz, R. N. Chem. Commun. 2002, 2749.
Shan, C. H.; Zhu, L.; Qu, L. B.; Bai, R. P.; Lan, Y. Chem. Soc. Rev. 2018, 47, 7552.
doi: 10.1039/C8CS00036K
Shan, C. H.; Zhong, K. B.; Qi, X. T.; Xu. D. D.; Qu, L. B.; Bai, R. P.; Lan, Y. Org. Chem. Front. 2018, 5, 3178.
doi: 10.1039/C8QO00699G
Chen, C. H.; Luo, Y. X.; Fu, L.; Chen, P. H.; Lan, Y.; Liu, G. S. J. Am. Chem. Soc. 2018, 140, 1207.
doi: 10.1021/jacs.7b11470
Zhang, H.; Wang, H. Y.; Luo, Y. X.; Chen, C. H.; Gao, Y. M.; Chen, P. H.; Guo, Y. L.; Lan, Y.; Liu, G. S. ACS Catal. 2018, 8, 2173.
doi: 10.1021/acscatal.7b03220
Yin, Y. Z.; Yue, X. Y.; Zhong, Q.; Jiang, H. M.; Bai, R. P.; Lan, Y.; Zhang, H. Adv. Synth. Catal. 2018, 360, 1639.
doi: 10.1002/adsc.v360.8
Yuan, C. C.; Zhu, L.; Chen, C. P.; Chen, X. L.; Yang, Y.; Lan, Y.; Zhao, Y. S. Nat. Commun. 2018, 9, 1189.
doi: 10.1038/s41467-018-03341-6
Yao, W. J.; Yu, Z. Y.; Wen, S.; Ni, H. Z.; Ullah, N.; Lan, Y.; Lu, Y. X. Chem. Sci. 2017, 8, 5196.
doi: 10.1039/C7SC00952F
Yu, Z. Y.; Lan, Y. J. Org. Chem. 2013, 78, 11501.
doi: 10.1021/jo402070f
Yue, X. Y.; Shan, C. H.; Qi, X. T.; Luo, X. L.; Zhu, L.; Zhang, T.; Li, Y. Y.; Li, Y. Z.; Bai, R. P.; Lan, Y. Dalton Trans. 2018, 47, 1819.
doi: 10.1039/C7DT04084A
Li, J. J.; Zhang, D. J.; Sun, H. J.; Li, X. Y. Org. Biomol. Chem. 2014, 12, 1897.
doi: 10.1039/C3OB42384K
Reade, S. P.; Mahon, M. F.; Whittlesey, M. K. J. Am. Chem. Soc. 2009, 131, 1861.
Murphy, E. F.; Murugavel, R.; Roesky, H. W. Chem. Rev. 1997, 97, 3425.
doi: 10.1021/cr960365v
Torrens, H. Coord. Chem. Rev. 2005, 249, 1957.
doi: 10.1016/j.ccr.2005.01.025
Vela, J.; Smith, J. M.; Yu, Y.; Ketterer, N. A.; Flaschenriem, C. J.; Lachicotte, R. J.; Holland, P. L. J. Am. Chem. Soc. 2005, 127, 7857.
doi: 10.1021/ja042672l
Fahey, D. R.; Mahan, J. E. J. Am. Chem. Soc. 1977, 99, 2501.
doi: 10.1021/ja00450a017
Fahey, D. R.; Mahan, J. E. J. Am. Chem. Soc. 1977, 99, 522.
Reinhold, M.; McGrady, J. E.; Perutz, R. N. J. Am. Chem. Soc. 2004, 126, 5268.
doi: 10.1021/ja0396908
Nova, A.; Erhardt, S.; Jasim, N. A. Perutz, R. N.; Macgregor, S. A.; McGrady, J. E.; Whitwood, A. C. J. Am. Chem. Soc. 2008, 130, 15499.
doi: 10.1021/ja8046238
Schaub, T.; Fischer, P.; Steffen, A.; Braun, T.; Radius, U.; Mix, A. J. Am. Chem. Soc. 2008, 130, 9304.
doi: 10.1021/ja074640e
Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Acc. Chem. Res. 1995, 28, 154.
doi: 10.1021/ar00051a009
Jasim, N. A.; Perutz, R. N.; Whitwood, A. C.; Braun, T.; Izundu, J.; Neumann, B.; Rothfeld, S.; Stammler, H. G. Organometallics 2004, 23, 6140.
doi: 10.1021/om049448p
Macgregor, S. A.; Roe, D. C.; Marshall, W. J.; Bloch, K. M.; Bakhmutov, V. I.; Grushin, V. V. J. Am. Chem. Soc. 2005, 127, 15304.
doi: 10.1021/ja054506z
Kozuch, S.; Amatore, C.; Jutand, A.; Shaik, S. Organometallics 2005, 24, 2319.
doi: 10.1021/om050160p
Blum, O.; Frolow, F.; Milstein, D. J. Chem. Soc., Chem. Commun. 1991, 258.
Su, M.; Chu, S. Inorg. Chem. 1998, 37, 3400.
doi: 10.1021/ic970320s
Erhardt, S.; Macgregor, S. A. J. Am Chem. Soc. 2008, 130, 15490.
doi: 10.1021/ja804622j
Johnson, S. A.; Mroz, N. M.; Valdizon, R.; Murray, S. Organometallics 2011, 30, 441.
doi: 10.1021/om100699d
McKay, D.; Riddlestone, I. M.; Macgregor, S. A.; Mahon, M. F.; Whittlesey, M. K. ACS Catal. 2015, 5, 776.
doi: 10.1021/cs501644r
Yoshikai, N.; Matsuda, H.; Nakamura, E. J. Am. Chem. Soc. 2009, 131, 9590.
doi: 10.1021/ja903091g
Macgregor, S. A.; McKay, D.; Panetier, J. A.; Whittlesey, M. K. Dalton Trans. 2013, 42, 7386.
doi: 10.1039/c3dt32962c
Jaiswal, A. K.; Goh, K. K. K.; Sung, S.; Young, R. D. Org. Lett. 2017, 19, 1934.
doi: 10.1021/acs.orglett.7b00712
Jia, X.; Guo, P.; Duan, J.; Shu, X. Chem. Sci. 2018, 9, 640.
doi: 10.1039/C7SC03140H
Honda, K.; Harris, T. V.; Hatanaka, M.; Morokuma, K.; Mikami K.; Chem.-Eur. J. 2016, 22, 8796.
doi: 10.1002/chem.201601090
Erickson, L. W.; Lucas, E. L.; Tollefson, E. J.; Jarvo, E. R. J. Am. Chem. Soc. 2016, 138, 14006.
doi: 10.1021/jacs.6b07567
Xu, Z. Y.; Yang, Y. N.; Jiang, J. L.; Fu, Y. Organometallics 2018, 37, 1114.
doi: 10.1021/acs.organomet.7b00894
Zell, T.; Schaub, T.; Radacki, K.; Radius, U. Dalton Trans. 2011, 40, 1852.
doi: 10.1039/c0dt01442g
Ichitsuka, T.; Fujita, T.; Arita, T.; Ichikawa, J. Angew. Chem., Int. Ed. 2014, 53, 7564.
doi: 10.1002/anie.201402695
Ichitsuka, T.; Fujita, T.; Ichikawa, J. ACS Catal. 2015, 5, 5947.
doi: 10.1021/acscatal.5b01463
Zhang, X. M.; Liu, Y. X.; Chen, G.; Pei, G. J.; Bi, S. W. Organometallics 2017, 36, 3739.
doi: 10.1021/acs.organomet.7b00514
Chen, W. J.; Xu, R. N.; Lin, W. M.; Sun, X. J.; Wang, B.; Wu, Q. H.; Huang, X. Front. Chem. 2018, 6, 319.
doi: 10.3389/fchem.2018.00319
Yan Qi , Yueqin Yu , Weisi Guo , Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
Lancanghong Chen , Xingtai Yu , Tianlei Zhao , Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089
Zhongyan Cao , Youzhi Xu , Menghua Li , Xiao Xiao , Xianqiang Kong , Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
The energies were determined by DFT with the BP86 functional in benzene solvent. The relative free energies (ΔG) in benzene are given in kcal/mol. The bond lengths are in angstroms.
The energies were determined by DFT with the M11-L functional in hexane solvent. The relative free energies (ΔG) in hexane are given in kcal/mol
The energies were determined by DFT with the BP86 functional in THF solvent. The relative free energies (ΔG) in THF are given in kcal/mol. The bond lengths are in angstroms
The energies were determined by DFT with the BP86 functional in benzene solvent. The relative free energies (ΔG) in benzene are given in kcal/mol. The bond lengths are in angstroms
The energies were determined by DFT with the BP86 functional in THF solvent. The relative free energies (ΔG) in THF are given in kcal/mol. The bond lengths are in angstroms
The energies were determined by DFT with the BP86 functional in toluene solvent. The relative free energies (ΔG) in toluene are given in kcal/mol
The energies were determined by DFT with the B3LYP functional in toluene solvent. The relative free energies (ΔG) in toluene are given in kcal/mol. The bond lengths are in angstroms
The energies were determined by DFT with the M06 functional in toluene solvent. The relative free energies (ΔG) in toluene are given in kcal/mol. The bond lengths are in angstroms