Citation: Qu Wenjuan, Fang Hu, Huang Qing, Zhang Youming, Lin Qi, Yao Hong, Wei Taibao. Research Progress of Cyanide Sensors in Different Medium[J]. Chinese Journal of Organic Chemistry, ;2019, 39(5): 1226-1243. doi: 10.6023/cjoc201810018 shu

Research Progress of Cyanide Sensors in Different Medium

  • Corresponding author: Qu Wenjuan, quwenjuanlz@163.com Zhang Youming, zhangnwnu@126.com Wei Taibao, weitaibao@126.com
  • Received Date: 16 October 2018
    Revised Date: 27 December 2018
    Available Online: 31 May 2019

    Fund Project: the National Natural Science Foundation of China 21574104the National Natural Science Foundation of China 21662031Project supported by the National Natural Science Foundation of China (Nos. 21661028, 21662031, 21574104)the National Natural Science Foundation of China 21661028

Figures(34)

  • Cyanide ion has strong toxicity for mammals, because it can affect many normal function of body, such as blood vessels, visual, as well as central nervous system, heart, endocrine and metabolic system. In addition, the cyanide salts are widely used in the production of human life, especially in electroplating and plastic manufacturing, mining, gold and silver leather industry, metallurgy, etc., which resulting in the pollution of environment. Therefore, the artificial cyanide selective receptor or fluorescent sensor has attracted widely attention in the field of anionic recognition. Due to the advantages of simple synthesis method, low cost, fast response, colorimetry and/or fluorescence change before and after reaction with cyanide, chemical sensors have been deeply studied by many researchers in the past decades. Based on the reaction of cyanide ions in different media, the research progress of cyanide sensors is summarized since 2010 from four aspects:(1) identification of cyanide in pure organic phase, (2) identification of cyanide ions in aqueous media, (3) identification of cyanide ions in pure water phase, and (4) identification of cyanide ions in solid phase. These sensors for cyanide in solution and solid material test and detect cyanide by naked eyes, which realizes the convenient, fast and real-time detection of cyanide in environmental and food samples.
  • 加载中
    1. [1]

      Anzenbacher, J. P.; Lubal, P.; Bucek, P.; Palacios, M. A.; Kozelkova, M. E. Chem. Soc. Rev. 2010, 39, 3954.  doi: 10.1039/b926220m

    2. [2]

      Gale, P. A.; Garcia-Garrido, S. E.; Garric, J. Chem. Soc. Rev. 2008, 37, 151.  doi: 10.1039/B715825D

    3. [3]

      Lemos, S. G.; Nogueira, A. R. A.; Torre-Neto, A. Parra A.; Alonso, J. J. Agric. Food. Chem. 2007, 55, 4658.  doi: 10.1021/jf063746a

    4. [4]

      Wang, Q.; Xie, Y.; Ding, Y. Li, X.; Zhu, W. Chem. Commun. 2010, 46, 3669.  doi: 10.1039/c001509a

    5. [5]

      Lin, Q.; Zhu, X.; Chen, P.; Fu, Y. P.; Zhang, Y. M.; Wei, T. B. Acta Chim. Sinica 2013, 71, 1516(in Chinese).  doi: 10.7503/cjcu20130108

    6. [6]

      Qu, W. J.; Li, W. T.; Zhang, H. L.; Zhang, Y. M.; Lin, Q.; Yao, H.; Wei, T. B. Chin. J. Org. Chem. 2018, 38, 1792(in Chinese).
       

    7. [7]

      Li, W. T.; Qu, W. J.; Zhang, H. L.; Li, X.; Lin, Q.; Yao, H.; Zhang, Y. M.; Wei, T. B. Chin. J. Org. Chem. 2017, 37, 2619(in Chinese).
       

    8. [8]

      Xu, Z.; Chen, X.; Kim, H. N.; Yoon, J. Chem. Soc. Rev. 2010, 39, 127.  doi: 10.1039/B907368J

    9. [9]

      Sen, B.; Mukherjee, M.; Pal, S.; Mandal, S. K.; Hundal, M. S.; Khuda-Bukhshb, A. R.; Chattopadhyay, P. RSC Adv. 2014, 4, 15356.  doi: 10.1039/C4RA00291A

    10. [10]

      Li, Q.; Guo, Y.; Shao, S. Analyst 2012, 137, 4497.  doi: 10.1039/c2an35904a

    11. [11]

      Li, Q.; Yue, Y.; Guo, Y.; Shao, S. Sens. Actuators, B 2012, 173, 797.  doi: 10.1016/j.snb.2012.07.105

    12. [12]

      Vennesland, B.; Conn, E. E.; Knowles, C. J.; Westley, J.; Wissing, F. Cyanide in Biology, Academic Press, London, 1981.

    13. [13]

      Way, J. L. Annu. Rev. Pharmacol. Toxicol. 1984, 24, 451.  doi: 10.1146/annurev.pa.24.040184.002315

    14. [14]

      Anderson, R.; Harland, W. Med., Sci. Law 1982, 22, 35.  doi: 10.1177/002580248202200106

    15. [15]

      Becker, C. Vet. Hum. Toxicol. 1985, 27, 487.
       

    16. [16]

      Zamecnik, J.; Tam, J. J. Anal. Toxicol. 1987, 11, 47.  doi: 10.1093/jat/11.1.47

    17. [17]

      Levin, B. C.; Cabrera, F. M.; Landron, F.; Clark, H. M.; Rodriguez, J. R.; Gurman, J. L.; Droz, L.; Yoklavich, M. F.; Rechani, P. R; Kaye, S. J. Forensic Sci. 1990, 35, 151.

    18. [18]

      Matsubara, K.; Akane, A.; Maseda, C.; Shiono, H. Forensic Sci. Int. 1990, 46, 203.  doi: 10.1016/0379-0738(90)90306-J

    19. [19]

      Mayes, R. W. J. Forensic Sci. 1991, 36, 179.
       

    20. [20]

      Baird, C.; Cann, M. Macmillan 2005.

    21. [21]

      Selkoe, D. J.; Schenk, D. Annu. Rev. Pharmacol. Toxicol. 2003, 43, 545.  doi: 10.1146/annurev.pharmtox.43.100901.140248

    22. [22]

      Young, C.; Tidwel, L. Cyanide: Social, Industrial and Economic Aspects: Minerals, Metals, and Materials Society, Anderson, C., Warrendale, PA, 2001.

    23. [23]

      Keshava, K.; Torawaneb, P.; Kumawatd, M. K.; Tayadeb, K.; Sahooc, S. K.; Srivastavad, R.; Kuwarb, A. Biosens. Bioelectron. 2017, 92, 95.  doi: 10.1016/j.bios.2017.02.006

    24. [24]

      Noh, J. Y.; Hwang, I. H.; Kim, H.; Song, E. J.; Kim, K. B.; Kim, C. Bull. Korean Chem. Soc. 2013, 34, 1985.  doi: 10.5012/bkcs.2013.34.7.1985

    25. [25]

      Park, G. J.; Hwang, I. H.; Song, E. J.; Kim, H.; Kim, C. Tetrahedron 2014, 70, 2822.  doi: 10.1016/j.tet.2014.02.055

    26. [26]

      Tang, L.; Zhou, P.; Zhong, K.; Hou, S. Sens. Actuators, B. 2013, 182, 439.  doi: 10.1016/j.snb.2013.03.043

    27. [27]

      Chen, X.; Nam, S. W.; Kim, G. H.; Song, N.; Jeong, Y.; Shin, I.; Kim, S. K.; Kim, J.; Park, S.; Yoon, J. Chem. Commun. 2010, 46, 8953.  doi: 10.1039/c0cc03398g

    28. [28]

      Qu, Y.; Jin, B.; Liu, Y.; Wu, Y.; Yang, L.; Wu, J.; Hua, J. Tetrahedron Lett. 2013, 54, 4942.  doi: 10.1016/j.tetlet.2013.07.011

    29. [29]

      Goswami, S.; Manna, A.; Paul, S.; Das, A. K.; Aich, K.; Nandi, P. K. Chem. Commun. 2013, 49, 2912.  doi: 10.1039/c3cc39256b

    30. [30]

      Lee, S. A.; You, G. R.; Choi, Y. W.; Jo, H. Y.; Kim, A. R.; Noh, I.; Kim, S. J.; Kim, Y.; Kim, C. Dalton Trans. 2014, 43, 6650.  doi: 10.1039/C4DT00361F

    31. [31]

      Lee, S. A.; You, G. R.; Choi, Y. W.; Jo, H. Y.; Kim, A. R.; Noh, I.; Kim, S. J.; Kim, Y.; Kim, C. Dalton Trans. 2014, 43, 6650.  doi: 10.1039/C4DT00361F

    32. [32]

      Jones, D. A. Phytochemistry 1998, 47, 15.
       

    33. [33]

      Greenfield, R. A.; Brown, B. R.; Hutchins, J. B.; Iandolo, J. J.; Jackson, R.; Slater, L. N.; Bronze, M. S. Am. J. Med. Sci. 2002, 323, 326.  doi: 10.1097/00000441-200206000-00005

    34. [34]

      Guidelines for Drinking-Water Quality. World Health Organization, Geneva, 1996.

    35. [35]

      Sun, S. S.; Lees, A. J. Chem. Commun. 2000, 17, 1687.

    36. [36]

      Miyaji, H.; Sessler, J. L. Angew. Chem. 2001, 113, 158.  doi: 10.1002/(ISSN)1521-3757

    37. [37]

      Kim, Y.; Zhao, Y.; Gabba , F. P. Angew. Chem., Int. Ed. 2009, 48, 4957.  doi: 10.1002/anie.v48:27

    38. [38]

      Anzenbacher, P.; Tyson, D. S.; Jursíkova, K.; Castellano, F. N. J. Am. Chem. Soc. 2002, 124, 6232.  doi: 10.1021/ja0259180

    39. [39]

      Shang, L.; Jin, L.; Dong, S. Chem. Commun. 2009, 21, 3077.
       

    40. [40]

      Senapati, D.; Dasary, S. S.; Singh, A. K.; Senapati, T.; Yu, H.; Ray, P. C. Chem.-Eur. J. 2011, 17, 8445.  doi: 10.1002/chem.201100617

    41. [41]

      Gimeno, N.; Li, X.; Durrant, J. R.; Vilar, R. Chem.-Eur. J. 2008, 14, 3006.  doi: 10.1002/(ISSN)1521-3765

    42. [42]

      Xu, Z.; Pan, J.; Spring, D. R.; Cui, J.; Yoon, J. Tetrahedron 2010, 66, 1678.  doi: 10.1016/j.tet.2010.01.008

    43. [43]

      Cheng, X.; Tang, R.; Jia, H.; Feng, J.; Qin, J.; Li, Z. ACS Appl. Mater. Interfaces 2012, 4, 4387.  doi: 10.1021/am3010412

    44. [44]

      Cho, D. G.; Sessler, J. L. Chem. Soc. Rev. 2009, 38, 1647.  doi: 10.1039/b804436h

    45. [45]

      Afkhami, A.; Sarlak, N. Sens. Actuators, B 2007, 122, 437.  doi: 10.1016/j.snb.2006.06.012

    46. [46]

      Badugu, R.; Lakowicz, J. R.; Geddes, C. D. J. Am. Chem. Soc. 2005, 127, 3635.  doi: 10.1021/ja044421i

    47. [47]

      Wu, Y.; Wang, J.; Zeng, F.; Huang, S.; Huang, J.; Xie, H.; Yu, C.; Wu, S. ACS Appl. Mater. Interfaces 2016, 8, 1511.  doi: 10.1021/acsami.5b11023

    48. [48]

      Kumari, N.; Jha, S.; Bhattacharya, S. J. Org. Chem. 2011, 76, 8215.  doi: 10.1021/jo201290a

    49. [49]

      Zhou, X.; Lv, X.; Hao, J.; Liu, D.; Guo, W. Dyes Pigm. 2012, 95, 168.  doi: 10.1016/j.dyepig.2012.03.025

    50. [50]

      Dong, M.; Peng, Y.; Dong, Y. M.; Tang, N.; Wang, Y. W. Org. Lett. 2012, 14, 130.  doi: 10.1021/ol202926e

    51. [51]

      Khatua, S.; Samanta, D.; Bats, J. W.; Schmittel, M. Inorg. Chem. 2012, 51, 7075.  doi: 10.1021/ic2022853

    52. [52]

      Fillaut, J. L.; Akdas-Kilig, H.; Dean, E.; Latouche, C.; Boucekkine, A. Inorg. Chem. 2013, 52, 4890.  doi: 10.1021/ic302478e

    53. [53]

      Kang, J.; Song, E. J.; Kim, H.; Kim, Y. H.; Kim, Y.; Kim, S. J.; C. Kim, Tetrahedron Lett. 2013, 54, 1015.  doi: 10.1016/j.tetlet.2012.12.053

    54. [54]

      Yang, L.; Li, X.; Yang, J.; Qu, Y.; Hua, J. ACS Appl. Mater. Interfaces 2013, 5, 1317.  doi: 10.1021/am303152w

    55. [55]

      Yang, Y.; Yin, C.; Huo, F.; Chao, J.; Zhang, Y.; Cheng, F. Sens. Actuators, B 2014, 193, 220.  doi: 10.1016/j.snb.2013.11.094

    56. [56]

      Liu, Y. W.; Kao, M. X.; Wu, A. T. Sens. Actuators, B 2015, 208, 429.  doi: 10.1016/j.snb.2014.11.039

    57. [57]

      Xing, P.; Xu, Y.; Li, H.; Liu, S.; Lu, A.; Sun, S. Sci Rep. 2015, 5, 16528.  doi: 10.1038/srep16528

    58. [58]

      Bejoymohandas, K. S.; Kumar, A.; Sreenadh, S.; Varathan, E.; Varughese, S.; Subramanian, V.; Reddy, M. L. P. Inorg. Chem. 2016, 55, 3448.  doi: 10.1021/acs.inorgchem.5b02885

    59. [59]

      Volpi, G. J. Chem. Educ. 2016, 93, 891.  doi: 10.1021/acs.jchemed.5b00750

    60. [60]

      Wu, H.; Chen, Y.; Rao, C.; Fan, D.; Wei, H.; Liu, C. Tetrahedron Lett. 2016, 57, 4969.  doi: 10.1016/j.tetlet.2016.09.083

    61. [61]

      Wang, L.; Zhu, L.; Li, L.; Cao, D. RSC Adv. 2016, 6, 55182.  doi: 10.1039/C6RA10073B

    62. [62]

      Huo, F.; Zhang, Y.; Yue, Y.; Chao, J.; Zhang, Y.; Yin, C. Dyes Pigm. 2017, 143, 270.  doi: 10.1016/j.dyepig.2017.04.050

    63. [63]

      Liu, J.; Liu, Y.; Liu, Q.; Li, C.; Sun, L.; Li, F. J. Am. Chem. Soc. 2011, 133, 15276.  doi: 10.1021/ja205907y

    64. [64]

      Lee, H.; Kim, H. J. Tetrahedron Lett. 2012, 53, 5455.  doi: 10.1016/j.tetlet.2012.07.128

    65. [65]

      Jo, J.; Olasz, A.; Chen, C. H.; Lee, D. J. Am. Chem. Soc. 2013, 135, 3620.  doi: 10.1021/ja312313f

    66. [66]

      Robbins, T. F.; Qian, H.; Su, X.; Hughes, R. P.; Aprahamian, I. Org. Lett. 2013, 15, 2386.  doi: 10.1021/ol4008298

    67. [67]

      Lin, W. C.; Fang, S. K.; Hu, J. W.; Tsai, H. Y.; Chen, K. Y. Anal. Chem. 2014, 86, 4648.  doi: 10.1021/ac501024d

    68. [68]

      Pramanik, S.; Bhalla, V.; Kumar, M. ACS Appl. Mater. Interfaces 2014, 6, 5930.  doi: 10.1021/am500903d

    69. [69]

      Qu, W.; Gao, G.; Shi, B.; Zhang, P.; Wei, T.; Lin, Q.; Yao, H.; Zhang, Y. Supramol. Chem. 2014, 26, 403.  doi: 10.1080/10610278.2013.844814

    70. [70]

      Qu, W.; Gao, G.; Shi, B.; Zhang, P.; Wei, T.; Lin, Q.; Yao, H.; Zhang, Y. Supramol. Chem. 2014, 26, 403.  doi: 10.1080/10610278.2013.844814

    71. [71]

      Chen, K. Y.; Lin, W. C. Dyes Pigm. 2015, 123, 1.  doi: 10.1016/j.dyepig.2015.07.012

    72. [72]

      Qiao, L.; Cai, Y.; Yao, H.; Lin, Q.; Zhu, Y. R.; Li, H.; Zhang, Y. M.; Wei, T. B. Spectrochim. Acta., Part A 2015, 136, 1047.  doi: 10.1016/j.saa.2014.09.128

    73. [73]

      Chow, C. F.; Ho, P. Y.; Wong, W. L.; Gong, C. B. Chem.-Eur. J. 2015, 21, 12984.  doi: 10.1002/chem.201501448

    74. [74]

      Cheng, X.; Li, H.; Zheng, F.; Lin, Q.; Zhang, Y.; Yao, H.; Wei, T. Dyes Pigm. 2016, 127, 59.  doi: 10.1016/j.dyepig.2015.12.021

    75. [75]

      Jeong, J. W.; Angupillai, S.; Kim, I. J.; Jeonga, J.; Kim, H. S.; So, H. S.; Son, Y. A. Sens. Actuators, B 2016, 237, 341.  doi: 10.1016/j.snb.2016.06.107

    76. [76]

      Singh, Y.; Ghosh, T. Talanta 2016, 148, 257.  doi: 10.1016/j.talanta.2015.10.085

    77. [77]

      Wei, T. B.; Li, W. T.; Li, Q.; Qu, W. J.; Li, H.; Yan, G. T.; Lin, Q.; Yao, H.; Zhang, Y. M. RSC Adv. 2016, 6, 43832.  doi: 10.1039/C6RA06769G

    78. [78]

      El-Shishtawy, R. M.; Al-Zahrani, F. A. M.; Al-amshany, Z. M.; Asiri, A. M. Sens. Actuators, B 2017, 240, 288.  doi: 10.1016/j.snb.2016.08.168

    79. [79]

      Wang, L.; Li, L.; Cao, D. Sens. Actuators, B 2017, 241, 1224.  doi: 10.1016/j.snb.2016.10.007

    80. [80]

      Liu, T.; Huo, F.; Li, J.; Cheng, F.; Yin, C. Sens. Actuators, B 2017, 239, 526.  doi: 10.1016/j.snb.2016.08.051

    81. [81]

      Chen, J.; Li, W.; Li, Q.; Lin, Q.; Yao, H.; Zhang, Y.; Wei, T. Chin. J. Chem. 2017, 35, 1165.  doi: 10.1002/cjoc.v35.7

    82. [82]

      Shiraishi, Y.; Sumiya, S.; Manabe, K.; Hirai, T. ACS Appl. Mater. Interfaces 2011, 3, 4649.  doi: 10.1021/am201069n

    83. [83]

      Lin, Q.; Liu, X.; Wei, T. B.; Zhang, Y. M. Chem. Asian J. 2013, 8, 3015.  doi: 10.1002/asia.v8.12

    84. [84]

      Wang, P.; Yao, Y.; Xue, M. Chem. Commun. 2014, 50, 5064.  doi: 10.1039/C4CC01403K

    85. [85]

      Rhaman, M. M.; Alamgir, A.; Wong, B. M.; Powell, D. R.; Hossain, M. A. RSC Adv. 2014, 4, 54263.  doi: 10.1039/C4RA10813B

    86. [86]

      Jung, K.; Lee, H. Anal. Chem. 2015, 87, 9308.  doi: 10.1021/acs.analchem.5b01982

    87. [87]

      Qing, Z.; Hou, L.; Yang, L.; Zhu, L.; Yang, S.; Zheng, J.; Yang, R. Anal. Chem. 2016, 88, 9759.  doi: 10.1021/acs.analchem.6b02720

    88. [88]

      Bhowmick, I.; Boston, D. J.; Higgins, R. F.; Klug, C. M.; Shores, M. P.; Gupta, T. Sens. Actuators, B 2016, 235, 325.  doi: 10.1016/j.snb.2016.05.053

    89. [89]

      Wei, T. B.; Li, W. T.; Li, Q.; Su, J. X.; Qu, W. J.; Lin, Q.; Yao, H.; Zhang, Y. M. Tetrahedron Lett. 2016, 57, 2767.  doi: 10.1016/j.tetlet.2016.05.028

    90. [90]

      Li, Y.; Wang, Q.; Zhou, X.; Wen, C.; Yu, J.; Han, X.; Li, X.; Yan, Z.; Zeng, J. Sens. Actuators, B 2016, 228, 366.  doi: 10.1016/j.snb.2016.01.022

    91. [91]

      Uppa, S. H.; Tripathy, S.; Chawla, S.; Sharma, B.; Dalai, M. K.; Singh, S. P.; Singh, S.; Singh, N. J. Environ. Sci. 2017, 55, 76.  doi: 10.1016/j.jes.2016.07.011

    92. [92]

      Lin, Q.; Liu, L.; Zheng, F.; Mao, P. P.; Liu, J.; Zhang, Y. M.; Yao, H.; Wei, T. B. Tetrahedron 2017, 73, 5307.  doi: 10.1016/j.tet.2017.07.028

    93. [93]

      Momeni, S.; Ahmadi, R.; Safavi, A.; Nabipour, I. Talanta 2017, 175, 514.  doi: 10.1016/j.talanta.2017.07.056

    94. [94]

      Männel-Croisé, C.; Zelder, F. ACS Appl. Mater. Interfaces 2012, 4, 725.  doi: 10.1021/am201357u

    95. [95]

      Zong, C.; Zheng, L. R.; He, W.; Ren, X.; Jiang, C.; Lu, L. Anal. Chem. 2014, 86, 1687.  doi: 10.1021/ac403480q

    96. [96]

      Lin, Q.; Lu, T. T.; Zhu, X.; Sun, B.; Yang, Q. P.; Wei, T. B.; Zhang, Y. M. Chem. Commun. 2015, 51, 1635.  doi: 10.1039/C4CC07814D

    97. [97]

      Barare, B.; Babahan, I.; Hijji, Y. M.; Bonyi, E.; Tadesse, S.; Aslan, K. Sensors 2016, 16, 271.
       

    98. [98]

      Incel, A.; Akın, O.; Cağır, A.; Yıldız,Ü. H.; Demir, M. M. Sens. Actuators, B 2017, 252, 886.  doi: 10.1016/j.snb.2017.05.185

    99. [99]

      Kim, M. J.; Manivannan, R.; Kim, I. J.; Son, Y. A. Sens. Actuators, B 2017, 253, 942.  doi: 10.1016/j.snb.2017.07.049

    100. [100]

      Maurya, N.; Singh, A. K. Sens. Actuators, B 2017, 245, 74.  doi: 10.1016/j.snb.2017.01.121

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    4. [4]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    5. [5]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    6. [6]

      Haiyang Jin Yonghai Hui Yongfei Zhang Lijun Gao Yun Wang . Application and Exploration of Nuclear Magnetic Resonance Spectrometer in Undergraduate Basic Laboratory Teaching. University Chemistry, 2025, 40(3): 245-250. doi: 10.12461/PKU.DXHX202406022

    7. [7]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    8. [8]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    9. [9]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    10. [10]

      Zufeng Qiu Jie Ouyang Yiru Wang Hengting Yang Xin Liao Chi Zhang Xuanyao Jiang Shunliu Deng Zhiwei Lin . 综合运用分析仪器解析“盲盒”样品——未知物的剖析. University Chemistry, 2025, 40(6): 296-302. doi: 10.12461/PKU.DXHX202405167

    11. [11]

      Tianyang Yu Hao Wei . “Illness Enters through the Mouth”: A Brief Overview of Toxic Chemical Substances in Common Foods. University Chemistry, 2025, 40(7): 225-231. doi: 10.12461/PKU.DXHX202409083

    12. [12]

      Xue Qi Zhihui Wen Xiaohang Qiu . Design of Chemistry Popular Science Courses for Primary and Secondary School Students across Various Ages under the “Double Reduction” Policy: A Case Study of Nankai University’s Chemistry Science Popularization Base. University Chemistry, 2024, 39(9): 392-400. doi: 10.3866/PKU.DXHX202310070

    13. [13]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    14. [14]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    17. [17]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    18. [18]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    19. [19]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

    20. [20]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

Metrics
  • PDF Downloads(13)
  • Abstract views(2239)
  • HTML views(277)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return