Citation: Wang Tongtong, Hua Xiaochen, Yu Youjun, Yuan Yi, Fung Mankeung, Jiang Zuoquan. Design and Synthesis of Highly Efficient Blue Thermally Activated Delayed Fluorescence Molecules Based on Carbazole and 1, 3, 5-Triazine Units through Position Engineering[J]. Chinese Journal of Organic Chemistry, ;2019, 39(5): 1436-1443. doi: 10.6023/cjoc201810016 shu

Design and Synthesis of Highly Efficient Blue Thermally Activated Delayed Fluorescence Molecules Based on Carbazole and 1, 3, 5-Triazine Units through Position Engineering

  • Corresponding author: Fung Mankeung, mkfung@suda.edu.cn Jiang Zuoquan, zqjiang@suda.edu.cn
  • Received Date: 14 October 2018
    Revised Date: 5 December 2018
    Available Online: 9 May 2019

    Fund Project: the National Natural Science Foundation of China 51873139Project supported by the National Natural Science Foundation of China (Nos. 21572152, 51873139)the National Natural Science Foundation of China 21572152

Figures(4)

  • Using carbazole as the donor motif, triazine as the acceptor motif, two thermally activated delayed fluorescence (TADF) molecules of m-CzTri and p-CzTri were designed and synthesized through efficient combination and position regulation. Both materials emit bright blue fluorescence with very small singlet-triplet splitting energy. Computational simulations show that the donor and acceptor groups are well separated from the highest occupied orbit (HOMO) and the lowest unoccupied orbit (LUMO). In addition, their thermal, electrochemical, photophysical, and device properties were tested. Among them, the color coordinates of organic light emitting diode (OLED) devices with m-CzTri as the emitter were (0.15, 0.25), and the external quantum efficiency was as high as 18%.
  • 加载中
    1. [1]

      Tang, C. W.; Vanslyke, S. A. Appl. Phys. Lett. 1987, 51, 913.  doi: 10.1063/1.98799

    2. [2]

      Adachi, C. Jpn. J. Appl. Phys. 2014, 53, 060101.  doi: 10.7567/JJAP.53.060101

    3. [3]

      Baldo, M. A.; O'Brien, D. F.; Thompson, M. E.; Forrest, S. R. Phys. Rev. B 1999, 60, 14422.  doi: 10.1103/PhysRevB.60.14422

    4. [4]

      Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151.  doi: 10.1038/25954

    5. [5]

      Wang, Y.-K.; Sun, Q.; Wu, S.-F.; Yuan, Y.; Li, Q.; Jiang, Z.-Q.; Fung, M.-K.; Liao, L.-S. Adv. Funct. Mater. 2016, 26, 7929.  doi: 10.1002/adfm.v26.43

    6. [6]

      Yang, S.; Meng, F.; Wu, X.; Wu, X.; Yin, Z.; Liu, X.; You, C.; Wang, Y.; Su, S.; Zhu, W. J. Mater. Chem. C 2018, 6, 5769.  doi: 10.1039/C8TC01142G

    7. [7]

      Méhes, G.; Nomura, H.; Zhang, Q.; Nakagawa, T.; Adachi, C. Angew. Chem., Int. Ed. 2012, 51, 11311.  doi: 10.1002/anie.201206289

    8. [8]

      Pan, K.-C.; Li, S.-W.; Ho, Y.-Y.; Shiu, Y.-J.; Tsai, W.-L.; Jiao, M.; Lee, W.-K.; Wu, C.-C.; Chung, C.-L.; Chatterjee, T.; Li, Y.-S.; Wong, K.-T.; Hu, H.-C.; Chen, C.-C.; Lee, M.-T. Adv. Funct. Mater. 2016, 26, 7560.  doi: 10.1002/adfm.v26.42

    9. [9]

      Yuan, Y.; Hu, Y.; Zhang, Y.-X.; Lin, J.-D.; Wang, Y-K; Jiang, Z.-Q.; Liao L.-S. Adv. Funct. Mater. 2017, 27, 1700986.  doi: 10.1002/adfm.v27.26

    10. [10]

      Liang, X.; Yan, Z.-P.; Han, H.-B.; Wu, Z.-G.; Zheng, Y.-X.; Meng, H.; Zuo, J.-L.; Huang, W. Angew. Chem. 2018, 130, 11486.  doi: 10.1002/ange.201806323

    11. [11]

      Matsui, K.; Oda, S.; Yoshiura, K.; Nakajima, K.; Yasuda, N.; Hatakeyama, T. J. Am. Chem. Soc. 2018, 140, 1195.  doi: 10.1021/jacs.7b10578

    12. [12]

      Xie, Y.; Li, Z. J. Polym. Sci. Part A: Polym. Chem. 2017, 55, 575.

    13. [13]

      Goushi, K.; Yoshida, K.; Sato, K.; Adachi, C. Nat. Photonics 2012, 6, 253.  doi: 10.1038/nphoton.2012.31

    14. [14]

      Zhu, M. Z.; Yang, C. L. Chem. Soc. Rev. 2013, 42, 4963.  doi: 10.1039/c3cs35440g

    15. [15]

      Im, Y.; Kim, M.; Cho, Y. J.; Seo, J.-A.; Yook, K. S.; Lee, J. Y. Chem. Mater. 2017, 29, 1946.  doi: 10.1021/acs.chemmater.6b05324

    16. [16]

      Einzinger, M.; Zhu, T.; De Silva, P.; Belger, C.; Swager, T. M.; Van Voorhis, T.; Baldo, M. A. Adv. Mater. 2017, 29, 1701987.  doi: 10.1002/adma.201701987

    17. [17]

      Xie, G.; Li, X.; Chen, D.; Wang, Z.; Cai, X.; Chen, D.; Li, Y.; Liu, K.; Cao, Y.; Su, S. J. Adv. Mater. 2016, 28, 181.  doi: 10.1002/adma.201503225

    18. [18]

      Liu, M.; Komatsu, R.; Cai, X.; Hotta, K.; Sato, S.; Liu, K.; Chen, D.; Kato, Y.; Sasabe, H.; Ohisa, S.; Suzuri, Y.; Yokoyama, D.; Su, S.-J.; Kido, J. Chem. Mater. 2017, 29, 8630.  doi: 10.1021/acs.chemmater.7b02403

    19. [19]

      Etherington, M. K.; Gibson, J.; Higginbotham, H. F.; Penfold, T. J.; Monkman, A. P. Nat. Commun. 2016, 7, 13680.  doi: 10.1038/ncomms13680

    20. [20]

      Shizu, K.; Noda, H.; Tanaka, H.; Taneda, M.; Uejima, M.; Sato, T.; Tanaka, K.; Kaji, H.; Adachi, C. J. Phys. Chem. C 2015, 119, 26283.  doi: 10.1021/acs.jpcc.5b07798

    21. [21]

      Zhang, Q.; Kuwabara, H.; Potscavage, W. J., Jr.; Huang, S.; Hatae, Y.; Shibata, T.; Adachi, C. J. Am. Chem. Soc. 2014, 136, 18070.  doi: 10.1021/ja510144h

    22. [22]

      Shizu, K.; Tanaka, H.; Uejima, M.; Sato, T.; Tanaka, K.; Kaji, H.; Adachi, C. J. Phys. Chem. C 2015, 119, 1291.  doi: 10.1021/jp511061t

    23. [23]

      Chen, X. K.; Tsuchiya, Y.; Ishikawa, Y.; Zhong, C.; Adachi, C.; Bredas, J. L. Adv. Mater. 2017, 29, 1702767.  doi: 10.1002/adma.v29.46

    24. [24]

      Samanta, P. K.; Kim, D.; Coropceanu, V.; Bredas, J. L. J. Am. Chem. Soc. 2017, 139, 4042.  doi: 10.1021/jacs.6b12124

    25. [25]

      Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.  doi: 10.1038/nature11687

    26. [26]

      Wang, Y.-K.; Wu, S.-F.; Yuan, Y.; Li, S.-H.; Fung, M.-K.; Liao, L.-S.; Jiang, Z.-Q. Org. Lett. 2017, 19, 3155.  doi: 10.1021/acs.orglett.7b01281

    27. [27]

      Kawasumi, K.; Wu, T.; Zhu, T.; Chae, H. S.; Van Voorhis, T.; Baldo, M. A.; Swager, T. M. J. Am. Chem. Soc. 2015, 137, 11908.  doi: 10.1021/jacs.5b07932

    28. [28]

      Lee, S. Y.; Yasuda, T.; Park, I. S.; Adachi, C. Dalton. Trans. 2015, 44, 8356.  doi: 10.1039/C4DT03608E

    29. [29]

      Guo, J.; Li, X. L.; Nie, H.; Luo, W.; Gan, S.; Hu, S.; Hu, R.; Qin, A.; Zhao, Z.; Su, S. J.; Tang, B. Z. Adv. Funct. Mater. 2017, 27, 1606458.  doi: 10.1002/adfm.v27.13

    30. [30]

      Shizu, K.; Noda, H.; Tanaka, H.; Taneda, M.; Uejima, M.; Sato, T.; Tanaka, K.; Kaji, H.; Adachi, C. J. Phys. Chem. C 2015, 119, 26283.  doi: 10.1021/acs.jpcc.5b07798

    31. [31]

      Li, Y.; Liang, J.-J.; Li, H.-C.; Cui, L.-S.; Fung, M.-K.; Barlow, S.; Marder, S. R.; Adachi, C.; Jiang, Z.-Q.; Liao, L.-S. J. Mater. Chem. C 2018, 6, 5536.  doi: 10.1039/C8TC01158C

    32. [32]

      Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931.  doi: 10.1002/adma.v26.47

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Zehua ZhangHaitao YuYanyu Qi . Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect. Acta Physico-Chimica Sinica, 2025, 41(1): 100006-0. doi: 10.3866/PKU.WHXB202309042

    3. [3]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    6. [6]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    7. [7]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    8. [8]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    9. [9]

      Ruoqian Zhang Chaoqun Mu Yali Hou Mingming Zhang . 四苯乙烯基多组分金属有机笼的构筑及其固态发光性能研究. University Chemistry, 2025, 40(8): 277-283. doi: 10.12461/PKU.DXHX202410027

    10. [10]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    11. [11]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    12. [12]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    13. [13]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    14. [14]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    15. [15]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    16. [16]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    17. [17]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    18. [18]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    19. [19]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    20. [20]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

Metrics
  • PDF Downloads(20)
  • Abstract views(1651)
  • HTML views(254)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return