Citation: Zhang Ruize, Wang Guodong, Li Hongshuang, Duan Guiyun, Wang Kai, Xia Chengcai. Strong-Acid Cation Exchange Resin Catalyzed Synthesis of Bis(indolyl)methanes in Water[J]. Chinese Journal of Organic Chemistry, ;2019, 39(5): 1429-1435. doi: 10.6023/cjoc201810011 shu

Strong-Acid Cation Exchange Resin Catalyzed Synthesis of Bis(indolyl)methanes in Water

  • Corresponding author: Xia Chengcai, xiachc@163.com
  • Received Date: 11 October 2018
    Revised Date: 18 December 2018
    Available Online: 18 May 2019

    Fund Project: the Medical and Health Technology Development Program in Shandong Province 2015WS0102Project supported by the Medical and Health Technology Development Program in Shandong Province (No. 2015WS0102)

Figures(2)

  • An efficient protocol for conversion of aldehyde and indole into bis(indolyl)methanes derivatives catalyzed by strong-acid cation exchange resin has been developed. The H2O was used as solution and recycle catalyst can be used six times. Various bis(indolyl)methanes derivatives were obtained in excellent yields.
  • 加载中
    1. [1]

      (a) Garbe, T. R.; Kobayashi, M.; Shimizu, N.; Takesue, N.; Ozawa, M.; Yukawa, H. J. Nat. Prod. 2000, 63, 596.
      (b) Bifulco, G.; Bruno, I.; Riccio, R.; Lavayre, J.; Bourdy, G. J. Nat. Prod. 1995, 58, 1254.

    2. [2]

      (a) Shiri, M.; Zolfigol, M. A.; Kruger, H. G.; Tanbakouchian, Z. Chem Rev. 2010, 110, 2250.
      (b) Bell, R.; Carmeli, S.; Sar, N. J. Nat. Prod. 1994, 57, 1587.
      (c) Fahy, E.; Potts, B. C. M.; Faulkner, D. J.; Smith, K. J. Nat. Prod. 1991, 54, 564.
      (d) Swetha, A.; MadhuBabu, B.; Meshram. H. M. Tetrahedron Lett. 2015, 56, 1775.

    3. [3]

      Bharate, S. B.; Bharate, J. B.; Khan, S. I.; Tekwani, B. L.; Jacob, M. R.; Mudududdla, R.; Yadav, R. R.; Singh, B.; Sharma, P. R.; Maity, S.; Singh, B.; Khan, I. A.; Vishwakarma, R. A. Eur. J. Med. Chem. 2013, 63, 435.  doi: 10.1016/j.ejmech.2013.02.024

    4. [4]

      Sarva, S.; Harinath, J. S.; Sthanikam, S. P.; Ethiraj, S.; Vaithiyalingam, M.; Cirandur, S. R. Chin. Chem. Lett. 2016, 27, 16.  doi: 10.1016/j.cclet.2015.08.012

    5. [5]

      (a) Sashidhara, K. V.; Kumar, A.; Kumar, M.; Srivastava, A.; Puri, A. Bioorg. Med. Chem. Lett. 2010, 20, 6504.
      (b) Sashidhara, K. V.; Modukuri, R. K.; Sonkar, R.; Rao, K. B.; Bhatia, G. Eur. J. Med. Chem., 2013, 68, 38.
      (c) Sashidhara, K. V.; Kumar, A.; Kumar, M.; Srivastava, A.; Puri, A. Bioorg. Med. Chem. Lett. 2010, 20, 6504.

    6. [6]

      Lo, K. K. W.; Tsang, K. H. K.; Hui, W. K.; Zhu, N. Chem. Commun. 2003, 2704.

    7. [7]

      (a) Mahboobi, S.; Uecker, A.; Sellmer, A.; Cénac, C.; Hö cher, H.; Pongratz, H.; Eichhorn, E.; Hufsky, H.; Trümpler, A.; Sicker, M.; Heidel, F.; Fischer, T.; Stocking, C.; Elz, S.; Bö hmer, F. D.; Dove, S. J. Med. Chem. 2006, 49, 3101.
      (b) Kamal, A.; Srikanth, Y. V. V.; Ramaiah, M. J.; Khan, M. N. A.; Reddy, M. K.; Ashraf, M.; Lavanya, A.; Pushpavalli, S. N. C. V. L.; Pal-Bhadra, M. Bioorg. Med. Chem. Lett. 2012, 22, 571.
      (c) Safe, S.; Papineni, S.; Chintharlapalli, S. Cancer Lett. 2008, 26, 326.
      (d) Grosso, C.; Cardoso, A. L.; Lemos, A.; Varela, J.; Rodrigues, M. J.; Custodio, L. L.; Barreira, T. M. Eur. J. Med. Chem. 2015, 93, 9-15.
      (e) Rahimi, M.; Huang, K.-L.; Tang, C. K. Cancer Lett. 2010, 295, 59.
      (f) Li, Y. W.; VandenBoom, T. G.; Wang, Z. W.; Kong, D. J.; Ali, S.; Philip, P. A.; Sarkar, F. H. Cancer Res. 2010, 70, 1486.
      (g) Dawson, M. I.; Ye, M.; Cao, X. H.; Farhana, L; Hu, Q. Y.; Zhao, Y.; Xu, L. P.; Kiselyuk, A.; Correa, R. G.; Yang, L.; Hou, T. J.; Reed, J. C.; Itkin-Ansari, P.; Levine, F., Sanner, M. F.; Fontana, J. A.; Zhang. X.-K. ChemMedChem 2009, 4, 1106.

    8. [8]

      Plimmer, J. R.; Gammon, D. W.; Ragsdale, N. N. Encyclopedia of Agrochemicals, John Wiley and Sons, New York, 2003, 3.

    9. [9]

      (a) Cherioux, F.; Guyard, L.; Audebert, P. Adv. Mater. 1998, 10, 1013.
      (b) Noack, A.; Schr€oder, A.; Hartmann, H. Dyes Pigm. 2002, 57, 131.

    10. [10]

      (a) Minne, S. C.; Manalis, S. R.; Quate, C. F. Appl. Phys. Lett. 1995, 67, 3918.
      (b) Seyedi, N.; Khabazzadeh, H. Res. Chem. Intermed. 2015, 41, 2603.
      (c) Praveen, P. J.; Parameswaran, P. S.; Majik, M. S. Synthesis 2015, 47, 1827.
      (d) Shiri, M.; Zolfigol, M. A.; Kruger, H. G.; Tanbakouchian, Z.; Chem. Rev. 2010, 110, 2250.

    11. [11]

      (a) Noland, W. E.; Kumar, H. V.; Flick, G. C.; Aspros, C. L.; Yoon, J. H.; Wilt, A. C.; Dehkordi, N.; Thao, S.; Schneerer, A. K.; Gao, S. M.; Tritch. K. J. Tetrahedron 2017, 73, 3913.
      (b) Veisi, H.; Maleki, B.; Eshbala, F. H.; Veisi, H.; Masti, R.; Ashrafi, S. S.; Baghayeri, M. RSC Adv. 2014, 4, 30683.

    12. [12]

      Chhattise, P. K.; Arbuj, S. S.; Mohite, K. C.; Bhavsar, S. V.; Horne, A. S.; Handore, K. N.; Chabukswar, V. V. RSC Adv. 2014, 4, 28623.  doi: 10.1039/c4ra03419h

    13. [13]

      Ravia, K.; Krishnakumara, B.; Swaminathana, M. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2015, 45, 1380.  doi: 10.1080/15533174.2013.862710

    14. [14]

      (a) Mendes, S. R.; Thurow, S.; Penteado, F.; Silva, M. S. D.; Gariani, R. A.; Perin, G.; Lenardã o, E. J. Green Chem. 2015, 17, 4334.
      (b) Ghorbani-Vaghei, R.; Veisi, H.; Keypour, H.; Dehghani- Firouzabadi, A. A. Mol. Diversity 2010, 14, 87.

    15. [15]

      Shirini, F.; Khaligh, N. G. Chin. J. Catal. 2013. 34, 1890.  doi: 10.1016/S1872-2067(12)60669-X

    16. [16]

      Tumtin, S.; Kathing, C.; Phucho, I. T.; Nongrum, R.; Myrboh, B.; Nongkhlaw, R. J. Chin. Chem. Soc. 2015, 62, 321.  doi: 10.1002/jccs.201400221

    17. [17]

      Veisi, H.; Gholbedaghi, R.; Malakootikhah, J.; Sedrpoushan, A.; Maleki, B.; Kordestani, D. J. Heterocycl. Chem. 2010, 47, 1398.  doi: 10.1002/jhet.v47:6

    18. [18]

      Silveira, C. C.; Mendes, S. R.; Villetti, M. A.; Back, D. F.; Kaufman, T. S. Green Chem. 2012, 14, 2912.  doi: 10.1039/c2gc36131k

    19. [19]

      Liang, D. Q.; Huang, W. Z.; Yuan, L.; Ma, Y. H.; Ma, J. M.; Ning, D. M. Catal. Commun. 2014, 55, 11.  doi: 10.1016/j.catcom.2014.06.005

    20. [20]

      Jejurkar, V. P.; Khatri, C. K.; Chaturbhuj, G. U.; Saha, S. ChemistrySelect 2017, 2, 11693.  doi: 10.1002/slct.201702610

    21. [21]

      (a) Feng, X. L.; Guan, C. J.; Zhao, C. X. Synth. Commun. 2004, 34, 487.
      (b) Surasania, R.; Kalitaa, D.; Chandrasekharb, K. B. Green Chem. Lett. Rev. 2013, 6, 113.
      (c) Lin, Z. H.; Guan, C. J.; Feng, X. L.; Zhao, C. X. J. Mol. Catal. A: Chem. 2006, 247, 19.

    22. [22]

      Fekri, L. Z.; Nikpassand, M.; Kohansal, M. Russ. J. Gen. Chem. 2015, 85, 2861.  doi: 10.1134/S1070363215120361

    23. [23]

      Griffiths, K.; Kumar, P.; Akien, G. R.; Chilton, N. F.; Abdul-Sada, A.; Tizzard, G. J.; Coles, S. J.; Kostakis, G. E. Chem. Commun. 2016, 52, 7866.  doi: 10.1039/C6CC03608B

    24. [24]

      (a) Mobaraki, A.; Movassagh, B.; Karimi, B. Appl. Catal. A: Gen. 2014, 472, 123.
      (b) Wang, A. Q.; Liu, X.; Su, Z. X.; Jing, H. W. Sci. Technol. 2014, 4, 71
      (c) Rafiee, E.; Eavani, S.; Malaekeh-Nikouei, B. Chem. Lett. 2012, 41, 438.

    25. [25]

      (a) Saffar-Teluri, A. Res. Chem. Intermed. 2014, 40, 1061.
      (b) Shirini, F.; Lati, M. P. J. Iran. Chem. Soc. 2017, 14, 75.
      (c) Sadeghi, B.; Tavasoli, F. A.; Hassanabadi, A. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2015, 45, 1396.

    26. [26]

      Shi, X. L.; Lin, H. K.; Li, P. Y.; Zhang, W. Q. ChemCatChem 2014, 6, 2947.  doi: 10.1002/cctc.v6.10

    27. [27]

      Singh, N. G.; Nongrum, R.; Kathing, C.; Rani, J. W. S.; Nongkhlaw, R. Green Chem. Lett. Rev. 2014, 7, 137.  doi: 10.1080/17518253.2014.902506

    28. [28]

      Gao, G.; Han, Y.; Zhang, Z. H. ChemistrySelect 2017, 2, 11561.  doi: 10.1002/slct.201702326

    29. [29]

      Hirashita, T.; Ogawa, M.; Hattori, R.; Okochi, S.; Araki, S. Bull. Chem. Soc. Jpn. 2015, 88, 1760.  doi: 10.1246/bcsj.20150247

    30. [30]

      (a) Wu, C.; Lu, L. H.; Peng, A. Z.; Jia, G. K.; Peng, C.; Cao, Z.; Tang, Z. L.; He, W. M.; Xu, X. H. Green Chem., 2018, 20, 3683.
      (b) Zou, B. Yu, B.; Hu, C. W. J. CO2 Util. 2018, 26, 314.
      (c) Xie, L. Y.; Peng, S.; Lu, L. H.; Hu, J.; Bao, W. H.; Zeng, F.; Tang, Z. L.; Xu, X. H.; He, W. M. ACS Sustainable Chem. Eng. 2018, 6, 7989.

    31. [31]

      (a) Zhou, Z.; Duan, J. F.; Mu, X. J.; Xiao. S. Y. Chin. J. Org. Chem. 2018, 38, 585.
      (b) Yue, H. L.; Bao, P. L.; Wang, L. L.; Lv, X. X.; Yang, D. S.; Wang, H.; Wei, W. Chin. J. Org. Chem. 2019, 39, 463.
      (c) Zhao, S. Y.; Wang, Z. L. Chin. J. Org. Chem. 2016, 36, 862(in Chinese).
      (赵苏艳, 王祖利, 有机化学, 2016, 36, 862.)
      (d) Li, W. Y.; Yin, G. X.; Huang, L.; Xiao, Y.; Fu, Z. M.; Xin, X.; Liu, F.; Li, Z. Z.; He, W. M. Green Chem. 2016, 18, 4879.
      (e) Wu, C.; Xin, X.; Fu, Z. M.; Xie, L. Y.; Liu, K. J.; Wang, Z.; Li, W. Y.; Yuan, Z. H.; He, W. M. Green Chem. 2017, 19, 1983.

  • 加载中
    1. [1]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    2. [2]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    3. [3]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    4. [4]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    5. [5]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    6. [6]

      Rui WangYuan TianXuefeng GaoLei Jiang . Design and fabrication of triangle-pattern superwettability hybrid surface with high-efficiency condensation heat transfer performance. Chinese Chemical Letters, 2025, 36(3): 110395-. doi: 10.1016/j.cclet.2024.110395

    7. [7]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    8. [8]

      Yunxia LiuGuandong WuLin LiYiming NiuBingsen ZhangBotao QiaoJunhu Wang . Construction of sintering-resistant gold catalysts via ascorbic-acid inducing strong metal-support interactions. Chinese Chemical Letters, 2025, 36(4): 110608-. doi: 10.1016/j.cclet.2024.110608

    9. [9]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    10. [10]

      Zhaoru ChenXiaoxu LiuHaonan ChenJialong LiXiaofeng WangJianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194

    11. [11]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    12. [12]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    13. [13]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    14. [14]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    15. [15]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    16. [16]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    17. [17]

      Heng GaoZhaocong ChengGuangshui TuZonglin QiuXieyi XiaoHaotian ZhouHandou ZhengHaiyang Gao . Thermally robust bis(imino)pyridyl iron catalysts for ethylene polymerization: Synergy effects of weak π-π interaction, steric bulk, and electronic tuning. Chinese Chemical Letters, 2025, 36(5): 110762-. doi: 10.1016/j.cclet.2024.110762

    18. [18]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    19. [19]

      Yinghui Xia Yixi Lin Zhenming Xu . Cation potential guiding structural regulation of lithium halide superionic conductors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100448-100448. doi: 10.1016/j.cjsc.2024.100448

    20. [20]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

Metrics
  • PDF Downloads(4)
  • Abstract views(1055)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return