Citation: Zhang Yuping, Tian Xuechao, Zhang Yan, Hong Ran, Huang Shahua. Methods and Strategies for the Synthesis of Peduncularine[J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 47-58. doi: 10.6023/cjoc201810008 shu

Methods and Strategies for the Synthesis of Peduncularine

  • Corresponding author: Hong Ran, rhong@sioc.ac.cn Huang Shahua, shahua@sit.edu.cn
  • Received Date: 9 October 2018
    Revised Date: 22 November 2018
    Available Online: 5 January 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21402121) and the Collaborative Innovation Program of Shanghai Institute of Technology (No. XTCX2015-16)the Collaborative Innovation Program of Shanghai Institute of Technology XTCX2015-16Project supported by the National Natural Science Foundation of China 21402121

Figures(16)

  • (-)-Peduncularine is the principal alkaloid isolated from Tasmanian shrub Aristotelia peduncularis. Due to its unusual 6-azabicyclo[3.2.1]octane core, the indole alkaloid was received numerous attention from the synthetic community and several innovative synthetic strategies have been developed. In this minireview, the synthetic efforts of peduncularine are summarized as inspiration for future development of medicinally interesting derivatives.
  • 加载中
    1. [1]

      (a) Butler, M. S. J. Nat. Prod. 2004, 67, 2141.
      (b) Li, J. W.-H.; Vederas, J. C. Science 2009, 325, 161.
      (c) Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2016, 79, 629.
      (d) DeCorte, B. L. J. Med. Chem. 2016, 59, 9295.

    2. [2]

      Lawson, A. D. G.; MacCoss, M.; Heer, J. P. J. Med. Chem. 2018, 61, 4283.  doi: 10.1021/acs.jmedchem.7b01120

    3. [3]

      Over, B.; Wetzel, S.; Grütter, C.; Nakai, Y.; Renner, S.; Rauh, D.; Waldmann, H. Nat. Chem. 2013, 5, 21.  doi: 10.1038/nchem.1506

    4. [4]

      Bick, I. R. C.; Bremner, J. B.; Preston, N. W.; Calder, I. C. J. Chem. Soc., Chem. Commun. 1971, 1155.

    5. [5]

      Ros, H.-P.; Kyburz, R.; Preston, N. W.; Gallagher, R. T.; Bick, I. R. C.; Hesse, M. Helν. Chim. Acta 1979, 62, 481.  doi: 10.1002/(ISSN)1522-2675

    6. [6]

      Bick, I. R. C.; Hai, M. A.; Preston, N. W. Tetrahedron 1985, 41, 3127.  doi: 10.1016/S0040-4020(01)96665-7

    7. [7]

      Klaver, W. J.; Hiemstra, H.; Speckamp, W. N. J. Am. Chem. Soc. 1989, 111, 2588.  doi: 10.1021/ja00189a036

    8. [8]

      Dragar, C.; Bick, I. R. C. Phytochemistry 1992, 31, 3601.  doi: 10.1016/0031-9422(92)83734-G

    9. [9]

      (a) Singh, S. Chem. Rev. 2000, 100, 925.
      (b) Pollini, G. P.; Benetti, S.; De Risi, C.; Zanirato, V. Chem. Rev. 2006, 106, 2434.

    10. [10]

      (a) Carroll, F. I.; Abraham, P.; Parham, K.; Griffith, R. C.; Ahmad, A.; Richard, M. M.; Padilla, F. N.; Witkin, J. M.; Chiang, P. K. J. Med. Chem. 1987, 30, 805.
      (b) Carroll, F. I.; Abraham, P.; Mascarella, S. W.; Singh, P.; Moreland, C. G.; Sankar, S. S.; Kwon, Y. W.; Triggle, D. J. J. Med. Chem. 1991, 34, 1436.

    11. [11]

      Quirante, J.; Vila, X.; Bonjoch, J.; Kozikowski, A. P.; Johnson, K. M. Bioorg. Med. Chem. 2004, 12, 1383.

    12. [12]

      Holmes, A. B.; Kee, A.; Ladduwahetty, T.; Smith, D. F. J. Chem. Soc., Chem. Commun. 1990, 1412.

    13. [13]

      Chamberlin, A. R.; Chung, J. Y. L. J. Am. Chem. Soc. 1983, 105, 3653.  doi: 10.1021/ja00349a051

    14. [14]

      (a) Hiemstra, H.; Speckamp, W. N. Tetrahedron Lett. 1983, 24, 1407.
      (b) Hiemstra, H.; Klaver, W. J.; Speckamp, W. N. J. Org. Chem. 1984, 49, 1149.

    15. [15]

      Thomsen, I.; Clausen, K.; Scheibye, S.; Lawesson, S.-O. Org. Synth. 1984, 62, 158.  doi: 10.15227/orgsyn.062.0158

    16. [16]

      Robinson, B. Chem. Rev. 1969, 69, 227.  doi: 10.1021/cr60258a004

    17. [17]

      Rigby, J. H.; Meyer, J. H. Synlett 1999, 860.

    18. [18]

      Rigby, J. H.; Ateeq, H. S.; Charles, N. R.; Henshilwood, J. A.; Short, K. M. Sugathapala, P. M. Tetrahedron 1993, 49, 5495.  doi: 10.1016/S0040-4020(01)87265-3

    19. [19]

      McKillop, A.; Hunt, J. D.; Kienzle, F.; Bigham, E.; Taylor, E. C. J. Am. Chem. Soc. 1973, 95, 3635.  doi: 10.1021/ja00792a028

    20. [20]

      Lin, X.; Stien, D.; Weinreb, S. M. Tetrahedron Lett. 2000, 41, 2333.  doi: 10.1016/S0040-4039(00)00194-5

    21. [21]

      (a) Hudson, R. F.; Record, K. A. F. J. Chem. Soc., Perkin. 21978, 822.
      (b) Lin, X.; Stien, D.; Weinreb, S. M. Org. Lett. 1999, 1, 637.

    22. [22]

      (a) Washburn, D. G.; Heidebrecht, R. W., Jr.; Martin, S. F. Org. Lett. 2003, 5, 3523.
      (b) Martin, S. F. Pure Appl. Chem. 2005, 77, 1207.

    23. [23]

      (a) Brown, D. S.; Hansson, T.; Ley, S. V. Synlett 1990, 48.
      (b) Brown, D. S.; Charreu, P.; Hansson, T.; Ley, S. V. Tetrahedron 1991, 47, 1311.

    24. [24]

      Roberson, C. W.; Woerpel, K. A. Org. Lett. 2000, 2, 621.  doi: 10.1021/ol9913744

    25. [25]

      Durst, T.; O'Sullivan, M. J. J. Org. Chem. 1970, 35, 2043.  doi: 10.1021/jo00831a081

    26. [26]

      Roberson, C. W.; Woerpel, K. A. J. Org. Chem. 1999, 64, 1434.  doi: 10.1021/jo982375x

    27. [27]

      Dubé, D.; Scholte, A. A. Tetrahedron Lett. 1999, 40, 2295.  doi: 10.1016/S0040-4039(99)00211-7

    28. [28]

      Groaning, M. D.; Brengel, G. P.; Meyers, A. I. J. Org. Chem. 1998, 63, 5517.  doi: 10.1021/jo9805652

    29. [29]

      Tamao, K.; Ishida, N.; Tanaka, T.; Kumada, M. Organometallics 1983, 2, 1694.  doi: 10.1021/om50005a041

    30. [30]

      Roberson, C. W.; Woerpel, K. A. J. Am. Chem. Soc. 2002, 124, 11342.  doi: 10.1021/ja012152f

    31. [31]

      Shute, R. E.; Rich, D. H. Synthesis 1987, 346.

    32. [32]

      (a) Hosomi, A.; Sakurai, H. Tetrahedron Lett. 1976, 17, 1295.
      (b) Speckamp, W. N.; Moolenaar, M. J. Tetrahedron 2000, 56, 3817.

    33. [33]

      Roush, W. R.; Gillis, H. R. J. Org. Chem. 1980, 45, 4283.  doi: 10.1021/jo01310a006

    34. [34]

      Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61, 3849.  doi: 10.1021/jo960057x

    35. [35]

      Smitrovich, J. H.; Woerpel, K. A. J. Org. Chem. 1996, 61, 6044.  doi: 10.1021/jo960921l

    36. [36]

      Parikh, J. R.; Doering, W. E. J. Am. Chem. Soc. 1967, 89, 5505.  doi: 10.1021/ja00997a067

    37. [37]

      Cannizzo, L. F.; Grubbs, R. H. J. Org. Chem. 1985, 50, 2386.  doi: 10.1021/jo00213a040

    38. [38]

      Hodgson, D. M.; Shelton, R. E.; Moss, T. A.; Dekhane, M. Org. Lett. 2010, 12, 2834.

    39. [39]

      Mann, J.; de Almeida Barbosa L.-C. J. Chem. Soc., Perkin Trans. 1 1992, 787.

    40. [40]

      Davies, H. M. L.; Cao, G. Tetrahedron Lett. 1998, 39, 5943.  doi: 10.1016/S0040-4039(98)01221-0

    41. [41]

      Swallen, L. C.; Boord, C. E. J. Am. Chem. Soc. 1930, 52, 651.  doi: 10.1021/ja01365a033

    42. [42]

      Kitamura, M.; Ihara, R.; Uera, Y.; Narasaka, K. Bull. Chem. Soc. Jpn. 2006, 79, 1552.  doi: 10.1246/bcsj.79.1552

    43. [43]

      (a) Uchiyama, K.; Ono, A.; Hayashi, Y.; Narasaka, K. Bull. Chem. Soc. Jpn. 1998, 71, 2945.
      (b) Uchiyama, K.; Hayashi, Y.; Narasaka, K. Chem. Lett. 1998, 1261.

    44. [44]

      Kotsuki, H.; Asao, K.; Ohnishi, H. Bull. Chem. Soc. Jpn. 1984, 57, 3339.

    45. [45]

      Lenz, G. R.; Woo, ; Hawkins, B. L. J. Org. Chem. 1982, 47, 3049.  doi: 10.1021/jo00137a004

    46. [46]

      (a) Hudrlik, P. F.; Peterson, D. J. Am. Chem. Soc. 1975, 97, 1464.
      (b) Johnson, C. R.; Tait, B. D. J. Org. Chem. 1987, 52, 281.

    47. [47]

      Ragains, J. R.; Winkler, J. D. Org. Lett. 2006, 8, 4437.  doi: 10.1021/ol061577+

    48. [48]

      (a) Winkler, J. D.; Muller, C. L.; Scott, R. D. J. Am. Chem. Soc. 1988, 110, 4831.
      (b) Kwak, Y.-S.; Winkler, J. D. J. Am. Chem. Soc. 2001, 123, 7429.

    49. [49]

      Comins, D. L; Dehghani. A. Tetrahedron Lett. 1992, 33, 6299.  doi: 10.1016/S0040-4039(00)60957-7

    50. [50]

      Jigqjinni, V. B.; Wightman, R. H. Tetrahedron Lett. 1982, 23, 117.  doi: 10.1016/S0040-4039(00)97549-X

    51. [51]

      (a) Kyburz, R.; Schöpp, E.; Hesse, M.; Bick, I. R. C. Helv. Chim. Acta 1979, 62, 2539.
      (b) Bick, I. R. C.; Hai, M. A.; Preston, N. W. Tetrahedron Lett. 1988, 29, 3355.
      (c) Anderson, B. F.; Robertson, G. B.; Avey, P.; Donovan, W. F.; Bick, I. R. C.; Bremner, J. B.; Finney, A. J.T.; Preston, N. W.; Gallagher, R. T.; Russell, G. B. J. Chem. Soc., Chem. Commun. 1975, 511.
      (d) Bittner, M.; Silva, M.; Gopalakrishna, E. M.; Watson, W. H.; Zabel, V.; Matlin, S. A.; Sammes, P. G. J. Chem. Soc., Chem. Commun. 1978, 79.

    52. [52]

      (a) Bick, I. R. C.; Hai, M. A.; Preston, N. W. Heterocycles 1979, 12, 1563.
      (b) Saxton, J. E. Nat. Prod. Rep. 1994, 11, 493.
      (c) An elegant review on the biomimetic synthesis study of aristotelia alkaloids, see: Borschberg, H.-J. In The Alkaloids: Chemistry and Pharmacology, Vol. 48, Ed.: Cordell, G. A., Elsevier, Academic Press, 1996, Chapter 3, pp. 191~248.

    53. [53]

      (a) Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem. 2009, 52, 6752.
      (b) Szychowski, J.; Truchon, J.-F.; Bennani, Y. L. J. Med. Chem. 2014, 57, 9292.
      (c) Stockdale, T. P.; Williams. C. M. Chem. Soc. Rev. 2015, 44, 7737.

    54. [54]

      (a) Tamura, O.; Yanagimachi, T.; Kobayashi, T.; Ishibashi, H. Org. Lett. 2001, 3, 2427.
      (b) Zhai, H.-B.; Luo, S.-J.; Ye, C.-F.; Ma, Y.-X. J. Org. Chem. 2003, 68, 8268.
      (c) Yeung, Y. Y.; Hong, S.-W.; Corey, E. J. J. Am. Chem. Soc. 2006, 128, 6310.
      (d) Grainger, R. S.; Welsh, E. J. Angew. Chem., Int. Ed. 2007, 46, 5477.
      (e) Campbell, C. L.; Hassler, C.; Ko, S. S.; Voss, M. E.; Guaciaro, M. A.; Carter, P. H.; Cherney, R. J. J. Org. Chem. 2009, 74, 6368.

    55. [55]

      Kanchupalli, V.; Katukojvala, S. Angew. Chem., Int. Ed. 2018, 57, 5433.  doi: 10.1002/anie.v57.19

    56. [56]

      Zhan, Y.-Z.; Liu, T.; Wang, Z.-W. Chem. Eur. J. 2017, 23, 17862.  doi: 10.1002/chem.v23.71

    57. [57]

      Mackiewicz, P.; Furstoss, R.; Waegell, B. J. Org. Chem. 1978, 43, 3746.  doi: 10.1021/jo00413a026

    58. [58]

      Liu, T.; Mei, T.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2015, 137, 5871.  doi: 10.1021/jacs.5b02065

    59. [59]

      Holmes, A. B.; Raithby, P. R.; Thompson, J.; Baxter, A. J. G.; Dixon, J. J. Chem. Soc., Chem. Commun. 1983, 1490.

    60. [60]

      (a) Callis, D. J.; Thomas, N. F.; Pearson, D. P. J.; Potter, B. V. L. J. Org. Chem. 1996, 61, 4634.
      (b) Kumar, P.; Li, P.-H.; Korboukh, I.; Wang, T. L.; Yennawar, H.; Weinreb, S. M. J. Org. Chem. 2011, 76, 2094.

    61. [61]

      (a) Xie, C.; Luo, J.; Zhang, Y.; Huang, S.-H.; Zhu, L.; Hong, R. Org. Lett. 2018, 20, 2386.
      (b) Luo, J.; Xie, C.; Zhang, Y.; Huang, S.-H.; Zhu, L.; Hong, R. Tetrahedron 2018, 74, 5791.

    62. [62]

      Quirante, J.; Vila, X.; Escolano, C.; Bonjoch, J. J. Org. Chem. 2002, 67, 2323.  doi: 10.1021/jo0163849

    63. [63]

      Grainger, R. S.; Betou, M.; Male, L.; Pitak, M. B.; Coles, S. J. Org. Lett. 2012, 14, 2234.  doi: 10.1021/ol300605y

    64. [64]

      Walker, P. D.; Campbell, C. D.; Suleman, A.; Carr, G.; Anderson, E. A. Angew. Chem., Int. Ed. 2013, 52, 9139.  doi: 10.1002/anie.201304186

    65. [65]

      Yeh, M.-C. P.; Chang, Y.-M.; Lin, H.-H. Adv. Synth. Catal. 2017, 359, 2196.  doi: 10.1002/adsc.v359.13

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    3. [3]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    4. [4]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    5. [5]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    6. [6]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    7. [7]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    8. [8]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    9. [9]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    10. [10]

      Wenxu Liu Feng Han Boxuan Wang Huayi Liu Xiaobin Gu Xin Zhang Yao Liu . Comprehensive Chemical Experiment: Design, Synthesis, and Photoelectronic Properties Study of Fully Non-Fused Ring Electron Acceptors. University Chemistry, 2025, 40(10): 263-275. doi: 10.12461/PKU.DXHX202412021

    11. [11]

      Yujie WANGLaobang WANGZheng ZHANGQi LIUJianping LANG . Construction of W/Cu/S cluster-based supramolecular compounds via alkynyl/sulfur cycloaddition and their third-order nonlinear optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2069-2077. doi: 10.11862/CJIC.20250129

    12. [12]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    13. [13]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    14. [14]

      Shumin ZhangYaqi WangZelin WangLibo WangChangsheng AnDifa Xu . Ultrafast electron transfer at the ZIS1−x/UCN S-scheme interface enables efficient H2O2 photosynthesis coupled with tetracycline degradation. Acta Physico-Chimica Sinica, 2025, 41(11): 100136-0. doi: 10.1016/j.actphy.2025.100136

    15. [15]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    16. [16]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    17. [17]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    20. [20]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

Metrics
  • PDF Downloads(42)
  • Abstract views(2427)
  • HTML views(402)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return