Citation: Jia Xiaofei, Ren Xinyi, Wang Zheng, Xia Chungu, Ding Kuiling. Pyrrolyl-Based Phosphoramidite/Rh Catalyzed Asymmetric Hydroformylation of 1, 1-Disubstituted Olefins[J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 207-214. doi: 10.6023/cjoc201809033 shu

Pyrrolyl-Based Phosphoramidite/Rh Catalyzed Asymmetric Hydroformylation of 1, 1-Disubstituted Olefins

  • Corresponding author: Xia Chungu, cgxia@lzb.ac.cn Ding Kuiling, kding@mail.sioc.ac.cn
  • Received Date: 26 September 2018
    Revised Date: 10 October 2018
    Available Online: 19 January 2018

    Fund Project: the National Natural Science Foundation of China 21790333Project supported by the National Natural Science Foundation of China (No. 21790333), and the Key Research Program of Frontier Sciences (No. QYZDY-SSW-SLH012) & the Strategic Priority Research Program (No. XDB20000000) of the Chinese Academy of Sciencesthe Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000the Key Research Program of Frontier Sciences QYZDY-SSW-SLH012

Figures(2)

  • A readily prepared chiral pyrrolylphosphinite has been found highly efficient for Rh(I) catalyzed asymmetric hydroformylation of 1, 1-disubstituted olefins. Chiral linear aldehydes have been synthesized with high productivity (turnover number (TON) up to 8900), excellent regioselectivity, and good to high chemo- and enantio-selectivites (71%~86% ee). The reaction features ready catalyst preparation and wide functional group tolerance, thus will be of practical value in the use of asymmetric hydroformylation (AHF) for the synthesis of chiral α-alkyl-β-formylpropanoate analogues.
  • 加载中
    1. [1]

      For reviews: (a) Claver, C.; van Leeuwen, P. W. N. M. In Rhodium Catalyzed Hydroformylation, Chapter 5, Eds.: van Leeuwen, P. W. N. M.; Claver, C., Kluwer Academic Publishers, Dordrecht, 2002.
      (b) Agbossou, F.; Carpentier, J. F.; Mortreaux, A. Chem. Rev. 1995, 95, 2485.
      (c) Breit, B.; Seiche, W. Synthesis 2001, 1.
      (d) Franke, R.; Selent, D.; Börner, A. Chem. Rev. 2012, 112, 5675.
      (e) Perandones, B. F.; Godard, C.; Claver, C. Asymmetric Hydroformylation, Springer-Verlag Berlin Heidelberg, 2013.

    2. [2]

      Botteghi, C.; Paganelli, S.; Schionato, A.; Marchetti, M. Chirality 1991, 3, 355.  doi: 10.1002/(ISSN)1520-636X

    3. [3]

      (a) Sakai, N.; Mano, S.; Nozaki, K.; Takaya, H. J. Am. Chem. Soc. 1993, 115, 7033.
      (b) Nozaki, K.; Sakai, N.; Nanno, T.; Higashijima, T.; Mano, S.; Horiuchi, T.; Takaya, H. J. Am. Chem. Soc. 1997, 119, 4413.

    4. [4]

      For selected examples, see: (a) Buisman, G. J. H.; Vos, E. J.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. J. Chem. Soc. Dalton Trans. 1995, 409.
      (b) Dieguez, M.; Pamies, O.; Ruiz, A.; Castillon, S.; Claver, C. Chem.-Eur. J. 2001, 7, 3086.
      (c) Cobley, C. J.; Gardner, K.; Klosin, J.; Praquin, C.; Hill, C.; Whiteker, G. T.; Zanotti-Gerosa, A.; Petersen, J. L.; Abboud, K. A. J. Org. Chem. 2004, 69, 4031.
      (d) Breeden, S.; Cole-Hamilton, D. J.; Foster, D. F.; Schwarz, G. J.; Wills, M. Angew. Chem., Int. Ed. 2000, 39, 4106.
      (e) Wassenaar, J.; de Bruin, B.; Reek, J. N. H. Organometallics., 2010, 29, 2767.
      (f) Yan, Y.; Zhang, X. J. Am. Chem. Soc. 2006, 128, 7198.
      (g) Clark, T. P.; Landis, C. R.; Freed, S. L.; Klosin, J.; Abboud, K. J. Am. Chem. Soc. 2005, 127, 5040.
      (h) Zhao, B.; Peng, X.; Wang, Z.; Xia, C.; Ding, K. Chem.-Eur. J. 2008, 14, 7847.
      (i) McDonald, R. I.; Wong, G. W.; Neupane, R. P.; Stahl, S. S.; Landis, C. R. J. Am. Chem. Soc. 2010, 132, 14027.
      (j) Yu, H.; Eno, M. S.; Annis, A. H.; Morken, J. P. Org. Lett. 2015, 17, 3264.
      (k) Schmitz, C.; Holthusen, K.; Leitner, W.; Francio, G. ACS Catal. 2016, 6, 1584.
      (l) Allmendinger, S.; Kinuta, H.; Breit, B. Adv. Synth. Catal. 2015, 357, 41.
      (m) Vidal-Ferran, A.; Mon, I.; Bauz, A.; Frontera, A.; Rovira, L. Chem.-Eur. J. 2015, 21, 11417.
      (n) Xu, K.; Zheng, X.; Wang, Z.; Zhang, X. Chem.-Eur. J. 2014, 20, 4357.
      (o) Noonan, G. M.; Fuentes, J. A.; Cobley, C. J.; Clarke, M. L. Angew. Chem., Int. Ed. 2012, 51, 2477.
      (p) Tan, R.; Zheng, X.; Qu, B.; Sader, C. A.; Fandrick, K. R.; Senanayake, C. H.; Zhang, X. Org. Lett., 2016, 18, 3346.

    5. [5]

      (a) Watkins, A. L.; Hashiguchi, B. G.; Landis, C. R. Org. Lett. 2008, 10, 4553.
      (b) Mazuela, J.; Coll, M.; Pàmies, O.; Diéguez, M. J. Org. Chem. 2009, 74, 5440.
      (c) Worthy, A. D.; Joe, C. L.; Lightburn, T. E.; Tan, K. L. J. Am. Chem. Soc. 2010, 132, 14757.
      (d) Bellini, R.; Chikkali, S. H.; Berthon-Gelloz, G.; Reek, J. N. H. Angew. Chem., Int. Ed. 2011, 50, 7342.
      (e) Gadzikwa, T.; Bellini, R.; Dekker, H. L.; Reek, J. N. H. J. Am. Chem. Soc. 2012, 134, 2860.
      (f) Chikkali, S. H.; Bellini, R.; de Bruin, B.; van der Vlugt, J. I.; Reek, J. N. H. J. Am. Chem. Soc. 2012, 134, 6607.
      (g) Rovira, L.; Vaquero, M.; Vidal-Ferran, A. J. Org. Chem. 2015, 80, 10397.
      (h) Abrams, M. L.; Foarta, F.; Landis C. R. J. Am. Chem. Soc. 2014, 136, 14583.
      (i) Xu, K.; Zheng, X.; Wang, Z.; Zhang, X. Chem.-Eur. J. 2014, 20, 4357.

    6. [6]

      (a) Thomas, S. P.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2009, 48, 1896.
      (b) Wang, B.; Wong, O. A.; Zhao, M.-X.; Shi, Y. J. Org. Chem. 2008, 73, 9539 and the references therein.
      (c) Corberán, R.; Mszar, N. W.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2011, 50, 7079.

    7. [7]

      (a) Kollár, L.; Consiglio, G.; Pino, P. J. Organomet. Chem. 1987, 330, 305.
      (b) Kollár, L.; Bakos, J.; Tóth, I.; Heil, B. J. Organomet. Chem. 1988, 350, 277.
      (c) G. Parrinello, J. K. Stille, J. Am. Chem. Soc. 1987, 109, 7122.

    8. [8]

      (a) Wang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2011, 133, 19080.
      (b) Wang, X.; Buchwald, S. L. J. Org. Chem. 2013, 78, 3429.
      (c) Uhlemann, M.; Börner, A. ChemCatChem. 2012, 4, 753.

    9. [9]

      (a) Deng, Y.; Wang, H.; Sun, Y.; Wang, X. ACS Catal., 2015, 5, 6828.
      (b) Dutartre, M.; Bayardon, J.; Juge, S. Chem. Soc. Rev. 2016, 45, 5771 and the references cited therein.

    10. [10]

      You, C.; Li, S.; Li, X.; Lan, J.; Yang, Y.; Chung, L. W.; Lv, H.; Zhang, X. J. Am. Chem. Soc. 2018, 140, 4977.  doi: 10.1021/jacs.8b00275

    11. [11]

      (a) Jackstell, R.; Klein, H.; Beller, M.; Wiese, K.-D.; Rottger, D. Eur. J. Org. Chem. 2001, 20, 3871.
      (b) van der Slot, S. C.; Duran, J.; Luten, J.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Organometallics 2002, 21, 3873.
      (c) Yan, Y.; Zhang, X.; Zhang, X. J. Am. Chem. Soc. 2006, 128, 16058.
      (d) Jia, X.; Wang, Z.; Xia, C.; Ding, K. Chem. Eur. J. 2012, 18, 15288.

    12. [12]

      Ouellet, S. G.; Tuttle, J. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 32.  doi: 10.1021/ja043834g

    13. [13]

      Kim, D. H.; Chung, S. Tetrahedron:Asymmetry 1999, 10, 3769.  doi: 10.1016/S0957-4166(99)00421-8

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    4. [4]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    5. [5]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    6. [6]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    7. [7]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    8. [8]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    9. [9]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    10. [10]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    11. [11]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    14. [14]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    17. [17]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    18. [18]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    19. [19]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

    20. [20]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

Metrics
  • PDF Downloads(8)
  • Abstract views(1089)
  • HTML views(115)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return