Citation: Xie Xiaojuan, Zhang Zhong, Zhao Huaxin, Wan Wen, Hao Jian. Trifluoromethylated-Imidazolines as Efficient Organocatalyst for Asymmetric Aldol Reaction of Hydroxyacetone with Aldehydes[J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 117-121. doi: 10.6023/cjoc201809026 shu

Trifluoromethylated-Imidazolines as Efficient Organocatalyst for Asymmetric Aldol Reaction of Hydroxyacetone with Aldehydes

  • Corresponding author: Wan Wen, wanwen@shu.edu.cn Hao Jian, jhao@shu.edu.cn
  • Received Date: 21 September 2018
    Revised Date: 5 December 2018
    Available Online: 7 January 2018

    Fund Project: the National Natural Science Foundation of China 21572128the National Natural Science Foundation of China 21672139Project supported by the National Natural Science Foundation of China (Nos. 21572128, 21672139) and the Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science

Figures(2)

  • Aldol reaction of hydroxyacetone is an all-purpose route to construct the 1, 2-diol building blocks for the synthesis of multifarious natural products and biological active molecules. In this work, a new series of trifluoromethylated-imidazoline organocatalysts have been designed and synthesized. It is found that the trifluoromethylated chiral organocatalyst (2R, 4S)-4-benzyl-1, 2-dimethyl-2-(trifluoromethyl) imidazolidine (1a) has proved to be very efficient for the direct asymmetric aldol reaction of α-hydroxyketones with aldehydes to build the syn-1, 2-diol building blocks. Among the synthesized syn-aldol products, a good yield (up to 96%) and high stereoselectivity (up to dr=15:1, 99% ee) could be obtained. The F—H bonding derived from trifluoromethyl group was proposed to play an important role in the stabilization of the transition state.
  • 加载中
    1. [1]

      For reviews, see: (a) Palomo, C.; Oiarbide, M.; Garcia, J. M. Chem. Soc. Rev. 2004, 33, 65.
      (b) Mahrwald, R. Modern Aldol Reactions, Wiley-VCH, Weinheim, Germany, 2004, Vols. 1~2.
      (c) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138.
      (d) Houk, K. N.; List, B. Acc. Chem. Res. 2004, 37, 487.
      (e) List, B. Chem. Rev. 2007, 107, 5413.

    2. [2]

      (a) List, B.; Lerner, R. A. Barbas. C. F. J. Am. Chem. Soc. 2000, 122, 2395.
      (b) Notz, W.; List, B. J. Am. Chem. Soc. 2000, 122, 7386.

    3. [3]

      For reviews, see: (a) Torii, H.; Nakadai, M.; Ishihara, K.; Saito, S.; Yamamoto, H. Angew. Chem., Int. Ed. 2004, 43, 1983.
      (b) Northrup, A. B.; Mangion, I. K.; Hettche, F.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2004, 43, 2152.
      (c) Northrup, A. B.; MacMillan, D. W. C. Science 2004, 305, 1752.
      (d) Cordova, A.; Zou, W.; Ibrahem, I.; Reyes, E.; Engqvist, M.; Liao, W. W. Chem. Commun. 2005, 3586.
      (e) Kano, T.; Takai, J.; Tokuda, O.; Maruoka, K. Angew. Chem., Int. Ed. 2005, 44, 3055.
      (f) Enders, D.; Grondal, C. Angew. Chem., Int. Ed. 2005, 44, 1210.
      (g) Suri, J. T.; Ramachary, D. B.; Barbas. C. F. Org. Lett. 2005, 7, 1383.
      (h) Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas. C. F. J. Am. Chem. Soc. 2006, 128, 734.
      (i) Mukherjee, S.; Yang, J. W.; Hoffman, S.; List, B. Chem. Rev. 2007, 107, 5471.
      (j) Li, J.-Y.; Luo, S.-Z.; Cheng, J.-P. J. Org. Chem. 2009, 74, 1747.
      (k) Vellalath, S.; Romo, D. Angew. Chem., Int. Ed. 2016, 55, 13934.
      (l) Frias, M.; Cieslik, W.; Fraile, A.; Rosado-Abon, A.; Garido- Castro, A. F.; Yuste, F.; Aleman, J. Chem.-Eur. J. 2018, 24, 10906.

    4. [4]

      For examples of syn-aldol reactions of ketones, see: (a) Ramasastry, S. V.; Zhang, H.; Tanaka, F.; Barbas. C. F. J. Am. Chem. Soc. 2007, 129, 288.
      (b) Luo, S.; Xu, H.; Li, J.; Zhang, L.; Cheng, J.-P. J. Am. Chem. Soc. 2007, 129, 3074.
      (c) Ramasastry, S. S. V.; Albertshofer, K.; Utsumi, N.; Tanaka, F.; Barbas. C. F. Angew. Chem., Int. Ed. 2007, 46, 5572.
      (d) Xu, X.-Y.; Wang, Y.-Z.; Gong, L.-Z. Org. Lett. 2007, 9, 4247.
      (e) Utsumi, N.; Imai, M.; Tanaka, F.; Ramasastry, S. S. V.; Barbas. C. F. Org. Lett. 2007, 9, 3445.
      (f) Ramasastry, S. S. V.; Albertshofer, K.; Utsumi, N.; Barbas. C. F. Org. Lett. 2008, 10, 1621.
      (g) Zhu, M.-K.; Xu, X.-Y.; Gong, L.-Z. Adv. Synth. Catal. 2008, 350, 1390.
      (h) Luo, S.; Xu, H.; Zhang, L.; Li, J.; Cheng, J.-P. Org. Lett. 2008, 10, 653.

    5. [5]

    6. [6]

      (a) O'Hagan, D.; Bilton, C.; Howard, J. A. K.; Knight, L.; Tozer, D. J. J. Chem. Soc., Perkin Trans. 2 2000, 605.
      (b) Briggs, C. R. S.; O'Hagan, D.; Howard, J. A. K.; Yufit, D. S. J. Fluorine Chem. 2003, 119, 9.
      (c) Gooseman, N. E. J.; O'Hagan, D.; Slawin, A. M. Z.; Teale, A. M.; Tozer, D. J.; Young, R. J. Chem. Commun. 2006, 3190.
      (d) Gooseman, N. E. J.; O'Hagan, D.; Peach, M. G.; Slawin, A. M. Z.; Tozer, D. J.; Young, R. J. Angew. Chem., Int. Ed. 2007, 46, 5904.
      (e) MacMillan, D. W. C. Nature 2008, 455.
      (f) Cahard, D.; Bizet, V. Chem. Soc. Rev. 2014, 43, 135.

    7. [7]

      (a) Sparr, C.; Schweizer, W. B.; Senn, H. M.; Gilmou, R. Angew. Chem., Int. Ed. 2009, 48, 3065.
      (b) Diocco, D. A.; Oberg, K. M.; Dalton, D. M.; Rovis. T. J. Am. Chem. Soc. 2009, 131, 10872.

    8. [8]

      For reviews, see: (a) List, B.; Shabat, D.; Barbas. C. F.; Lerner, R. A. Chem.-Eur. J. 1999, 4, 881.
      (b) Yoshikawa, N.; Kumagai, N.; Matsunaga, S.; Moll, G.; Ohshima, T.; Suzuki, T.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 2466.
      (c) Trost, B. M.; Ito, H.; Silcoff, E. R. J. Am. Chem. Soc. 2001, 123, 3367.
      (d) Kumagai, N.; Matsunaga, S.; Kinoshita, T.; Harada, S.; Okada, S.; Sakamoto, S.; Yamaguchi, K.; Shibasaki, M. J. Am. Chem. Soc. 2003, 125, 2169.

    9. [9]

      Ahrendt, K. A.; Borths, C. J.; MacMillan. D. W. C. J. Am. Chem. Soc. 2000, 122, 4243.  doi: 10.1021/ja000092s

    10. [10]

      (a) Sarka, D.; Harman, K.; Ghosh, S.; Headley, D. Tetrahedron: Asymmetry 2011, 22, 1051.
      (b) Czarnecki, P.; Plutecka, A.; Gawronski, J.; Kacprzak, K. Green Chem. 2011, 13, 1280.
      (c) Paradowska, J.; Pasternak, M.; Gut, B.; Gryzło, B.; Mlynarski, J. J. Org. Chem. 2012, 77, 173.

  • 加载中
    1. [1]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    2. [2]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    3. [3]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    4. [4]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    5. [5]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    6. [6]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    7. [7]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    8. [8]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    9. [9]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    10. [10]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    11. [11]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    12. [12]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    13. [13]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    14. [14]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    15. [15]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    16. [16]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    17. [17]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    18. [18]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    19. [19]

      Yansong Xiao Yi Huang Xingxing Ma Qiuling Song . The Matteson Reaction in Organic Synthesis: From Fundamentals to Frontiers. University Chemistry, 2025, 40(10): 114-120. doi: 10.12461/PKU.DXHX202411023

    20. [20]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

Metrics
  • PDF Downloads(13)
  • Abstract views(1420)
  • HTML views(232)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return