Citation: Liu Yufeng, Cao Zhongzhong, Su Miaodong, Li Hui, Fu Meiqiang, Liu Qiang, Luo Weiping, Guo Cancheng. Iron(Ⅲ) Porphyrin Catalyzed Cyclization of Ketones with Dimethyl Sulfoxide and Ammonium Acetate: One-Pot Synthesis of Pyridines[J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 129-136. doi: 10.6023/cjoc201809014 shu

Iron(Ⅲ) Porphyrin Catalyzed Cyclization of Ketones with Dimethyl Sulfoxide and Ammonium Acetate: One-Pot Synthesis of Pyridines

  • Corresponding author: Guo Cancheng, ccguo@hnu.edu.cn
  • Received Date: 7 September 2018
    Revised Date: 29 November 2018
    Available Online: 5 January 2018

    Fund Project: the National Natural Science Foundations of China 21572049Project supported by the National Natural Science Foundations of China (No. 21572049)

Figures(2)

  • An iron(Ⅲ)-porphyrin-catalyzed cyclization of ketones with dimethyl sulfoxide (DMSO) and ammonium acetate for the synthesis of unsymmetrical and symmetrical pyridines by employing DMSO as C4 or C6 source has been developed. Various aryl ketone derivatives react readily with DMSO, producing the pyridines in yields of 30%~85%. This method uses non-noble metals and proceeds under mild reaction conditions with operational simplicity, which thus allows the expedient assembly of pyridines from readily available ketones. Based on the preliminary experiments, a plausible mechanism of this transformation is disclosed.
  • 加载中
    1. [1]

      (a) Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles, Wiley-VCH, Weinheim, 2003.
      (b) Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. Comprehensive Heterocyclic Chemistry, Elsevier, Oxford, 2008.
      (c) Joule, J. A.; Mills, K. Heterocyclic Chemistry, Wiley, Chichester, 2010.

    2. [2]

      (a) Forbes, I. T.; Johnson, C. N.; Jones, G. E.; Loudon, J.; Nicholass, J. M.; Thompson, M.; Upton, N. J. Med. Chem. 1990, 33, 2640.
      (b) Zhmurenko, L. A.; Molodavkin, G. M.; Voronina, T. A.; Lezina, V. P. Pharm. Chem. J. 2012, 46, 15.

    3. [3]

      Bahekar, R. H.; Jain, M. R.; Jadav, P. A.; Prajapati, V. M.; Patel, D. N.; Gupta, A. A.; Sharma, A.; Tom, R.; Bandyopadhya, D.; Modi, H.; Patel, P. R. Bioorg. Med. Chem. 2007, 15, 6782.

    4. [4]

      Rival, Y.; Grassy, G.; Taudou, A.; Ecalle, R. Eur. J. Med. Chem. 1991, 26, 13.  doi: 10.1016/0223-5234(91)90208-5

    5. [5]

      Zhuravel, I. O.; Kovalenko, S. M.; Ivachtchenko, A. V.; Balakin K. V.; Kazmirchuk, V. V. Bioorg. Med. Chem. Lett. 2005, 15, 5483.  doi: 10.1016/j.bmcl.2005.08.081

    6. [6]

      (a) Musonda, C. C.; Whitlock, G. A.; Witty, M. J.; Brun, R.; Kaiser, M. Bioorg. Med. Chem. Lett. 2009, 19, 401.
      (b) Moreno, D.; Plano, D.; Baquedano, Y.; Jimeez-Ruiz, A.; Palop, J. A.; Sanmartn, C. Parasitol. Res. 2011, 108, 233.

    7. [7]

      Rupert, K. C.; Henry, J. R.; Dodd, J. H.; Wadsworth, S. A.; Cavender, D. E.; Olini, G. C.; Fahmy, B.; Siekierka, J. J. Bioorg. Med. Chem. Lett. 2003, 13, 347.  doi: 10.1016/S0960-894X(02)01020-X

    8. [8]

      Kouznetsov, V. V.; Mendez, L. Y. V.; Tibaduiza, B.; Ochoa, C.; Pereira, D. M.; Ruiz, J. J. N.; Portillo, C. F.; Serrano, S. M.; Barrio, A. G.; Bahsas, A.; Amaro-Luis, J. Arch. Pharm. Pharm. Med. Chem. 2004, 337, 127.  doi: 10.1002/(ISSN)1521-4184

    9. [9]

      (a) Gibson, V. C.; Redshaw, C.; Solan, G. A. Chem. Rev. 2007, 107, 1745.
      (b) Rycke, N. D.; Couty, F.; David, O. R. P. Chem.-Eur. J. 2011, 17, 12852.

    10. [10]

      (a) Allais, C.; Grassot, J. M.; Rodriguez, J.; Constantieux, T. Chem. Rev. 2014, 114, 10829.
      (b) Zhao, M. N.; Hui, R. R.; Ren, Z. H.; Wang, Y. Y.; Guan, Z. H. Org. Lett. 2014, 16, 3082.
      (c) Bai, Y.; Tang, L. C.; Huang, H. W.; Deng, G. J. Org. Biomol. Chem. 2015, 13, 4404.
      (d) Yan, Y. Z.; Li, H. Y.; Li, Z.; Niu, B.; Shi, M. M.; Liu, Y. Q. J. Org. Chem. 2017, 82, 8628.

    11. [11]

      (a) Meunier, B. Biomimetic Oxidations Mediated by Metal Complexes, Imperial College Press, London, 2000.
      (b) Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. 2004, 104, 3947.
      (c) Zhou, X. T.; Ji, H. B.; Pei, L. X.; She, Y. B.; Xu, J. C.; Wang, L. F. Chin. J. Org. Chem. 2007, 27, 1039(in Chinese).
      (周贤太, 纪红兵, 裴丽霞, 佘远斌, 徐建昌, 王乐夫, 有机化学, 2007, 27, 1039.)

    12. [12]

      (a) Collman, J. P.; Wang, Z.; Straumanis, A.; Quelquejeu, M.; Rose, E. J. Am. Chem. Soc. 1999, 121, 460.
      (b) Yu, X. Q.; Huang, J. S.; Yu, W. Y.; Che, C. M. J. Am. Chem. Soc. 2000, 122, 5337.
      (c) Au, S. M.; Huang, J. S.; Yu, W. Y.; Fung, W. H.; Che, C. M. J. Am. Chem. Soc. 1999, 121, 9120.

    13. [13]

      (a) Li, Y.; Huang, J. S.; Zhou, Z. Y.; Che, C. M. J. Am. Chem. Soc. 2001, 123, 4843.
      (b) Bartoli, J. F.; Mansuy, V. M.; Barch-Ozette, K. L.; Palacio, M.; Battioni, P.; Mansuy, D. Chem. Commun. 2000, 827.
      (c) Yang, J.; Weinberg, R.; Breslow, R. Chem. Commun. 2000, 531.
      (d) Yu, W. Y.; Huang, J. S.; Zhou, Z. Y.; Che, C. M. Org. Lett. 2000, 2, 2233.

    14. [14]

      (a) Li, Y. F.; Guo, C, C.; Yan, X. H.; Liu, Q. J. Porphyrins Phthalocyanines 2006, 10, 942.
      (b) Jiang, Q.; Sheng, W. B.; Tian, M.; Tang, J. S.; Guo, C. C. Eur. J. Org. Chem. 2013, 10, 1861.
      (c) Sheng, W. B.; Jiang, Q.; Luo, W. P.; Guo, C. C. J. Org. Chem. 2013, 78, 5691.

    15. [15]

      (a) Pan, X. J.; Liu, Q.; Chang, L. M.; Yuan, G. Q. RSC Adv. 2015, 5, 51183.
      (b) Wu, X.; Zhang, J. H.; Liu, S.; Gao, Q. H.; Wu, A. X. Adv. Synth. Catal. 2016, 358, 218.

    16. [16]

      Liu, Y. F.; Ji, P. Y.; Xu, J. W.; Hu, Y. Q.; Liu, Q.; Luo, W. P.; Guo, C. C. J. Org. Chem. 2017, 82, 7159.  doi: 10.1021/acs.joc.7b00619

  • 加载中
    1. [1]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

    2. [2]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    3. [3]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    4. [4]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    5. [5]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    6. [6]

      Bofei JIAZhihao LIUZongyuan GAOShuai ZHOUMengxiang WUQian ZHANGXiamei ZHANGShuzhong CHENXiaohan YANGYahong LI . Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317

    7. [7]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    8. [8]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    9. [9]

      Yi ZHANGGuang LIWenxuan FANQingfeng YI . Influence of bismuth trisulfide on the electrochemical performance of iron electrode. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1196-1206. doi: 10.11862/CJIC.20240445

    10. [10]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    11. [11]

      Yijian ZhaoJvzhe LiYunyi ShiJie HuMeiyi LiuYao ShenXinglin HouQiuyue WangQi WangZhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132

    12. [12]

      Zhongsen WangLijun QiuYunhua HuangMeng ZhangXi CaiFanyu WangYang LinYanbiao ShiXiao Liu . Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal. Chinese Chemical Letters, 2024, 35(7): 109195-. doi: 10.1016/j.cclet.2023.109195

    13. [13]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    14. [14]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    15. [15]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    16. [16]

      Hua LiuJian ZhaoQi LiXiang-Yu ZhangZhi-Wei ZhengKun HuangDa-Bin QinBin Zhao . Indium-captured zirconium-porphyrin frameworks displaying rare multi-selectivity for catalytic transfer hydrogenation of aldehydes and ketones. Chinese Chemical Letters, 2025, 36(6): 110593-. doi: 10.1016/j.cclet.2024.110593

    17. [17]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    18. [18]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    19. [19]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    20. [20]

      Yunlong LiXinyu ZhangShuang LiuChunsheng LiQiang WangJin YeYong LuJiating Xu . Engineered iron-based metal-organic frameworks nanoplatforms for cancer theranostics: A mini review. Chinese Chemical Letters, 2025, 36(2): 110501-. doi: 10.1016/j.cclet.2024.110501

Metrics
  • PDF Downloads(2)
  • Abstract views(980)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return