Citation: Zhang Hao, Yu Shouyun. Visible Light-Promoted Isomerization of Alkenes[J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 95-108. doi: 10.6023/cjoc201809010 shu

Visible Light-Promoted Isomerization of Alkenes

  • Corresponding author: Yu Shouyun, yushouyun@nju.edu.cn
  • Received Date: 6 September 2018
    Revised Date: 14 October 2018
    Available Online: 19 January 2018

    Fund Project: the National Natural Science Foundation of China (No. 21732003) 21732003Project supported by the National Natural Science Foundation of China (No. 21732003)

Figures(25)

  • The traditional methods for synthesizing Z-olefins generally require the use of high-energy reagents. These methods are usually controlled by kinetics. The reaction conditions are harsh and low atom economic. During the process of separation, Z-olefins are easy to convert to the thermodynamically more stable E-olefins. With the continuous development of organic photochemistry and photocatalysis technology, more and more synthetic challenges have been solved by photocatalysis. Herein, various types of visible light-promoted photocatalytic isomerization of olefins are reviewed.
  • 加载中
    1. [1]

    2. [2]

      (a) Wittig, G.; Geissler, G. Justus Liebigs Ann. Chem. 1953, 580, 44.
      (b) Bergelson, L. D.; Shemyakin, M. M. Tetrahedron 1963, 19, 149.
      (c) Dong, D. J.; Li, H.-H.; Tian, S.-K. J. Am. Chem. Soc. 2010, 132, 5018.

    3. [3]

      (a) Julia, M.; Paris, J.-M. Tetrahedron Lett. 1973, 14, 4833.
      (b) Yao, C.-Z.; Li, Q.-Q.; Wang, M.-M.; Ning, X.-S.; Kang, Y.-B. Chem. Commun. 2015, 51, 7729.

    4. [4]

      (a) Peterson, D. J. J. Org. Chem. 1968, 33, 780.
      (b) Staden, L. F. V.; Gravestock, D.; Ager, D. J. Chem. Soc. Rev. 2002, 31, 195.

    5. [5]

      (a) Koh, M. J.; Khan, R. K. M.; Torker, S.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2014, 53, 1968.
      (b) Quigley, B. L.; Grubbs, R. H. Chem. Sci. 2013, 5, 501.
      (c) Gottumukkala, A. L.; Madduri, A. V. R.; Minnaard, A. J. ChemCatChem 2012, 4, 462.
      (d) Meek, S. J.; O'Brien, R. V.; Llaveria, J.; Schrock, R. R.; Hoveyda, A. H. Nature 2011, 471, 461.
      (e) Endo, K.; Grubbs, R. H. J. Am. Chem. Soc. 2011, 133, 8525.

    6. [6]

      (a) Lindlar, H. Helv. Chim. Acta 1952, 35, 446.
      (b) Li, X.; Song, W.; Tang, W. J. Am. Chem. Soc. 2013, 135, 16797.
      (c) Song, W.; Li, X.; Yang, K.; Zhao, X.-L.; Glazier, D. A.; Xi, B.-M.; Tang, W. J. Org. Chem. 2016, 81, 2930.

    7. [7]

      Singh, K.; Staig, S. J.; Weaver, J. D. J. Am. Chem. Soc. 2014, 136, 5275.  doi: 10.1021/ja5019749

    8. [8]

      Cai, W.; Fan, H.; Ding, D.; Zhang, Y.; Wang, W. Chem. Commun. 2017, 53, 12918.  doi: 10.1039/C7CC07984B

    9. [9]

      (a) Wald, G. J. Gen. Physiol. 1935, 19, 351.
      (b) O'Leary, B.; Duke, B.; Eilers, J. E. Nature 1973, 246, 166.
      (c) Lion, F.; Rotmans, J. P.; Daemen, F. J. M.; Bonting, S. L. Biochim. Biophys. Acta 1975, 384, 283.
      (d) Gai, F.; Hasson, K. C.; Cooper McDonald, J.; Anfinrud, P. A. Science 1998, 279, 1886.
      (e) Rando, R. R. Chem. Rev. 2001, 101, 1881.
      (f) Strauss, O. Physiol. Rev. 2005, 85, 845.
      (g) Redmond, T. M.; Poliakov, E.; Yu, S.; Tsai, J.-Y.; Lu, Z.; Gentleman, S. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 13658.

    10. [10]

      Metternich, J. B.; Gilmour, R. Synlett 2016, 27, 2541.  doi: 10.1055/s-0036-1588621

    11. [11]

      (a) Metternich, J. B.; Gilmour, R. J. Am. Chem. Soc. 2015, 137, 11254.
      (b) Metternich, J. B.; Artiukhin, D. G.; Holland, M. C.; Bremen-Kühne, M. V.; Neugebauer, J.; Gilmour, R. J. Org. Chem. 2017, 82, 9955.

    12. [12]

      Walker, A. G.; Radda, G. K. Nature 1967, 215, 1483.

    13. [13]

      Metternich, J. B.; Gilmour, R. J. Am. Chem. Soc. 2015, 137, 11254.  doi: 10.1021/jacs.5b07136

    14. [14]

      Metternich, J. B.; Gilmour, R. J. Am. Chem. Soc. 2016, 138, 1040.  doi: 10.1021/jacs.5b12081

    15. [15]

      Metternich, J. B.; Artiukhin, D. G.; Holland, M. C.; Bremen-Kühne, M. V.; Neugebauer, J.; Gilmour, R. J. Org. Chem. 2017, 82, 9955.  doi: 10.1021/acs.joc.7b01281

    16. [16]

      Metternich, J. B.; Sagebiel, S.; Lückener, A.; Lamping, S.; Ravoo, B. J.; Gilmour, R. Chem.-Eur. J. 2018, 24, 4228.  doi: 10.1002/chem.v24.17

    17. [17]

      Hammond, G. S.; Saltiel, J.; Lamola, A. A.; Turro, N. J.; Bradshaw, J. S.; Cowan, D. O.; Counsell, R. C.; Vogt, V.; Dalton, C. J. Am. Chem. Soc. 1964, 86, 3197.  doi: 10.1021/ja01070a002

    18. [18]

      (a) Hammond, G. S.; Saltiel, J. J. Am. Chem. Soc. 1962, 84, 4983.
      (b) Hammond, G. S.; Saltiel, J. J. Am. Chem. Soc. 1963, 85, 2515.
      (c) Hammond, G. S.; Saltiel, J.; Lamola, A. A.; Turro, N. J.; Bradshaw, J. S.; Cowan, D. O.; Counsell, R. C.; Vogt, V.; Dalton, C. J. Am. Chem. Soc. 1964, 86, 3197.

    19. [19]

      (a) Arai, T.; Sakuragi, H.; Tokumaru, K. Chem. Lett. 1980, 9, 261.
      (b) Arai, T.; Sakuragi, H.; Tokumaru, K. Bull. Chem. Soc. Jpn. 1982, 55, 2204.

    20. [20]

      Zhao, Y.-P.; Yang, L.-Y.; Liu, R. S. H. Green Chem. 2009, 11, 837.  doi: 10.1039/b819207c

    21. [21]

      Cai, W.; Fan, H.; Ding, D.; Zhang, Y.; Wang, W. Chem. Commun. 2017, 53, 12918.  doi: 10.1039/C7CC07984B

    22. [22]

      Faßbender, S. I.; Metternich, J. B.; Gilmour, R. Org. Lett. 2018, 20, 724.  doi: 10.1021/acs.orglett.7b03859

    23. [23]

      Osawa, M.; Hoshino, M.; Wakatsuki, Y. Angew. Chem., Int. Ed. 2001, 40, 18.

    24. [24]

      Rackl, D.; Kreitmeier, P.; Reiser, O. Green Chem. 2016, 18, 214.  doi: 10.1039/C5GC01792K

    25. [25]

      Fabry, D. C.; Ronge, M. A.; Rueping, M. Chem. Eur. J. 2015, 21, 5350.  doi: 10.1002/chem.201406653

    26. [26]

      Molloy, J. J.; Metternich, J. B.; Daniliuc, C. G.; Watson, A. J. B.; Gilmour, R. Angew. Chem., Int. Ed. 2018, 57, 3168.  doi: 10.1002/anie.201800286

    27. [27]

      Lin, Q.-Y.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2014, 79, 10434.  doi: 10.1021/jo502040t

    28. [28]

      Iqbal, N.; Jung, J.; Park, S.; Cho, E. J. Angew. Chem., Int. Ed. 2014, 53, 539.  doi: 10.1002/anie.v53.2

    29. [29]

      Senaweera, S. M.; Singh, A.; Weaver, J. D. J. Am. Chem. Soc. 2014, 136, 3002.  doi: 10.1021/ja500031m

    30. [30]

      (a) Singh, A.; Kubik, J. J.; Weaver, J. D. Chem. Sci. 2015, 6, 7206.
      (b) Senaweera, S.; Weaver, J. D. J. Am. Chem. Soc. 2016, 138, 2520.

    31. [31]

      Singh, A.; Fennell, C. J.; Weaver, J. D. Chem. Sci. 2016, 7, 6796.  doi: 10.1039/C6SC02422J

    32. [32]

      Zhang, H.; Huang, X. Adv. Synth. Catal. 2016, 358, 3736.  doi: 10.1002/adsc.201600704

    33. [33]

      Li, Y.; Miao, T.; Li, P.; Wang, L. Org. Lett. 2018, 20, 1735.  doi: 10.1021/acs.orglett.8b00171

    34. [34]

      Zheng, C.; Cheng, W.-M.; Li, H.-L.; Na, R.-S.; Shang, R. Org. Lett. 2018, 20, 2559.  doi: 10.1021/acs.orglett.8b00712

    35. [35]

      Li, J.; Chen, J.; Huang, W.; Cheng, X. Chin. J. Org. Chem. 2018, 38, 1507.
       

    36. [36]

      An, X.-D.; Zhang, H.; Xu, Q.; Yu, L.; Yu, S. Chin. J. Chem. 2018, 36, 1147.  doi: 10.1002/cjoc.v36.12

  • 加载中
    1. [1]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    5. [5]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    6. [6]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    7. [7]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    8. [8]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    9. [9]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    10. [10]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    11. [11]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

    12. [12]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    13. [13]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    14. [14]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    15. [15]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    16. [16]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    17. [17]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    18. [18]

      Jiamin Li Wenyue Zhong Kin Shing Chan . “烯”君入瓮又入学——据元素周期表与酸碱理论谈烯烃教学. University Chemistry, 2025, 40(6): 177-182. doi: 10.12461/PKU.DXHX202408040

    19. [19]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    20. [20]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

Metrics
  • PDF Downloads(136)
  • Abstract views(3886)
  • HTML views(1206)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return