Citation: Yin Zhiping, Wang Zechao, Wu Xiao-Feng. Transition-Metal-Catalyzed Carbonylative Synthesis and Functionalization of Heterocycles[J]. Chinese Journal of Organic Chemistry, ;2019, 39(3): 573-590. doi: 10.6023/cjoc201809004 shu

Transition-Metal-Catalyzed Carbonylative Synthesis and Functionalization of Heterocycles

  • Corresponding author: Wu Xiao-Feng, xiao-feng.wu@catalysis.de
  • Received Date: 4 September 2018
    Revised Date: 26 September 2018
    Available Online: 19 March 2018

Figures(38)

  • Heterocycles are ubiquitous in natural products, pharmaceuticals, organic materials, and numerous functional molecules. These structural units probably constitute the largest and most varied family of organic compounds. Hence the development of new procedures for heterocycles synthesis has been a hot research topic for over centuries. Among all the new synthetic methods, transition-metal-catalyzed reactions are attractive. Those reactions can formulate complicated heterocycles efficiently from available starting materials under mild conditions and atom economical routes. Among them, transition-metal-catalyzed carbonylation reaction has become an efficient and useful tool in organic synthesis since the first hydroformylation reaction developed by W. Reppe at BASF in the 1930s. Since then impressive progress has been achieved in this area. In nowadays, various types of carbonylation reactions were established. Substrates including aryl halides, olefins, alkynes or simply C-H bond can be activated and produce the corresponding carbonyl-containing compounds smoothly. On the other hand, carbon monoxide was discovered and identified in the 18th century. Since the first applications in industry around 80 years ago, academic and industrial laboratories have explored uses of CO in chemical reactions broadly. However, because of the special physical properties of CO, organic chemists were often reluctant to apply carbonylations frequently in laboratories. Hence, different kinds of CO surrogates were developed and applied in carbonylation reactions, such as metal carbonyl compounds M(CO)x, formates, alcohols, formic acid, aldehyde, biomass and carbon dioxide. Those CO surrogates offer interesting opportunities for carbonylation reactions. This account mainly outlines our progress in the development of transition-metal-catalyzed carbonylative synthesis and functionalization of heterocycles from 2012 to 2018. With copper, palladium, rhodium, ruthenium and iridium as the catalysts and relying on the activation of carbon-halogen and carbon-hydrogen bonds, we are able to synthesis various of heterocycles by using CO gas or CO surrogates as the C1 building blocks.
  • 加载中
    1. [1]

      For selected recent reviews, see: (a) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Soc. Rev. 2011, 40, 4986.
      (b) Gabriele, B.; Mancuso, R.; Salerno, G. Eur. J. Org. Chem. 2012, 6825.
      (c) Peng, J.-B.; Qi, X.; Wu, X.-F. Synlett 2017, 28, 175.
      (d) Wu, X.-F. RSC Adv. 2016, 6, 83831.
      (e) Peng, J.-B.; Qi, X.; Wu, X.-F. ChemSusChem 2016, 9, 2279.
      (f) Peng, J.-B.; Wu, X.-F. Angew. Chem., Int. Ed. 2018, 57, 1152.
      (g) Peng, J.-B.; Wu, F.-P.; Wu, X.-F. Chem. Rev. 2019, 119, 2090.

    2. [2]

      (a) Sigman, M. S.; Kerr, C. E.; Eaton, B. E. J. Am. Chem. Soc. 1993, 115, 7545.
      (b) Wu, X. F.; Jiao, H. J.; Neumann, H.; Beller, M. Chem. Eur. J. 2012, 18, 16177.

    3. [3]

      Schranck, J.; Wu, X. F.; Tlili, A.; Neumann, H.; Beller, M. Chem. Eur. J. 2013, 19, 12959.  doi: 10.1002/chem.v19.39

    4. [4]

      Wu, X. F.; Neumann, H.; Neumann, S.; Beller, M. Tetrahedron Lett. 2013, 54, 3040.  doi: 10.1016/j.tetlet.2013.03.053

    5. [5]

      Wu, X. F.; Neumann, H.; Neumann, S.; Beller, M. Chem.-Eur. J. 2012, 18, 13619.  doi: 10.1002/chem.201202652

    6. [6]

      Wu, X. F.; Zhang, M.; Jiao, H. J.; Neumann, H.; Beller, M. Asian J. Org. Chem. 2013, 2, 135.  doi: 10.1002/ajoc.v2.2

    7. [7]

      Chen, J. B.; Natte, K.; Spannenberg, A.; Neumann, H.; Beller, M.; Wu, X. F. Org. Biomol. Chem. 2014, 12, 5578.  doi: 10.1039/C4OB00796D

    8. [8]

      Chen, J. B.; Natte, K.; Wu, X. F. Tetrahedron Lett. 2015, 56, 342.  doi: 10.1016/j.tetlet.2014.11.091

    9. [9]

      Shen, C. R.; Spannenberg, A.; Auer, M.; Wu, X. F. Adv. Synth. Catal. 2017, 359, 941.  doi: 10.1002/adsc.201601343

    10. [10]

      (a) Yang, Q.; Alper, H. J. Org. Chem. 2010, 75, 948. (b) Awuah, E.; Capretta, A. Org. Lett. 2009, 11, 3210. (d) Miao, H.; Yang, Z. Org. Lett. 2000, 2, 1765.

    11. [11]

      Wu, X. F.; Neumann, H.; Beller, M. Chem.-Eur. J. 2012, 18, 12595.  doi: 10.1002/chem.201202141

    12. [12]

      Zhu, F. X.; Li, Y. H.; Wang, Z. C.; Wu, X. F. Catal. Sci. Technol. 2016, 6, 2905  doi: 10.1039/C6CY00613B

    13. [13]

      Shen, C. R.; Li, W. F.; Yin, H. F.; Spannenberg, A.; Skrydstrup, T.; Wu, X. F. Adv. Synth. Catal. 2016, 358, 466.  doi: 10.1002/adsc.201500858

    14. [14]

      He, L.; Li, H. Q.; Neumann, H.; Beller, M.; Wu, X. F. Angew. Chem., Int. Ed. 2014, 53, 1420.  doi: 10.1002/anie.v53.5

    15. [15]

      Natte, K.; Neumann, H.; Wu, X. F. Catal. Sci. Technol. 2015, 5, 4474.  doi: 10.1039/C5CY00907C

    16. [16]

      Chen, J. B.; Natte, K.; Spannenberg, A.; Neumann, H.; Langer, P.; Beller, M.; Wu, X. F. Angew. Chem., Int. Ed. 2014, 53, 7579.  doi: 10.1002/anie.201402779

    17. [17]

      Chen, J. B.; Natte, K.; Neumann, H.; Wu, X. F. Chem.-Eur. J. 2014, 20, 16107.  doi: 10.1002/chem.v20.49

    18. [18]

      Wu, X. F.; He, L.; Neumann, H.; Beller, M. Chem.-Eur. J. 2013, 19, 12635.  doi: 10.1002/chem.201302182

    19. [19]

      Li, H. Q.; He, L.; Neumann, H.; Beller, M.; Wu, X. F. Green Chem. 2014, 16, 1336.  doi: 10.1039/C3GC42089B

    20. [20]

      Shen, C.; Man, N. Y. T.; Stewart, S.; Wu, X. F. Org. Biomol. Chem. 2015, 13, 4422.  doi: 10.1039/C5OB00368G

    21. [21]

      Shen, C. R.; Spannenberg, A.; Wu, X. F. Angew. Chem., Int. Ed. 2016, 55, 5067.  doi: 10.1002/anie.v55.16

    22. [22]

      Wu, X. F.; Neumann, H.; Beller, M. Chem.-Eur. J. 2012, 18, 12599.  doi: 10.1002/chem.201202142

    23. [23]

      Wu, X. F.; Neumann, H.; Neumann, S.; Beller, M. Chem.-Eur. J. 2012, 18, 8596.  doi: 10.1002/chem.v18.28

    24. [24]

      Natte, K.; Chen, J. B.; Li, H. Q.; Neumann, H.; Beller, M.; Wu, X. F. Chem.-Eur. J. 2014, 20, 14184.  doi: 10.1002/chem.v20.44

    25. [25]

      Wu, X. F.; Wu, L. P.; Jackstell, R.; Neumann, H.; Beller, M. Chem.-Eur. J. 2013, 19, 12245.  doi: 10.1002/chem.201301774

    26. [26]

      Chen, J. B.; Natte, K.; Neumann, H.; Wu, X. F. RSC Adv. 2014, 4, 56502.  doi: 10.1039/C4RA11303A

    27. [27]

      Chen, J. B.; Neumann, H.; Beller, M.; Wu, X. F. Org. Biomol. Chem. 2014, 12, 5835.  doi: 10.1039/C4OB01103A

    28. [28]

      Li, H. Q.; Li, W. F.; Spannenberg, A.; Baumann, W.; Neumann, H.; Beller, M.; Wu, X. F. Chem.-Eur. J. 2014, 20, 8541.  doi: 10.1002/chem.201403417

    29. [29]

      (a) Shen, C. R.; Wu, X. F. Catal. Sci. Technol. 2015, 5, 4433.
      (b) Shen, C. R.; Neumann, H.; Wu, X. F. Green Chem. 2015, 17, 2994.

    30. [30]

      Li, H. Q.; Spannenberg, A.; Neumann, H.; Beller, M.; Wu, X. F. Chem. Commun. 2014, 50, 2114.  doi: 10.1039/c3cc48490d

    31. [31]

      Zhu, F. X.; Li, Y. H.; Wang, Z. C.; Wu, X. F. Adv. Synth. Catal. 2016, 358, 3350.  doi: 10.1002/adsc.v358.21

    32. [32]

      (a) Zhu, F. X.; Li, Y. H.; Wang, Z. C.; Wu, X. F. Angew. Chem., Int. Ed. 2016, 55, 14151. (b) Zhu, F. X.; Wang, Z. C.; Li, Y. H.; Wu, X. F. Chem.-Eur. J. 2017, 23, 3276. (c) Zhu, F. X.; Wu, X. F. Org. Lett. 2018, 20, 3422.

    33. [33]

      Wu, X. F.; Sharif, M.; Shoaib, K.; Neumann, H.; Pews-Davtyan, A.; Langer, P.; Beller, M. Chem.-Eur. J. 2013, 19, 6230.  doi: 10.1002/chem.201300537

    34. [34]

      Wu, X. F.; Oschatz, S.; Sharif, M.; Beller, M.; Langer, P. Tetrahedron 2014, 70, 23.  doi: 10.1016/j.tet.2013.11.055

    35. [35]

      (a) He, L.; Sharif, M.; Neumann, H.; Beller, M.; Wu, X. F. Green Chem. 2014, 16, 3763.
      (b) Peng, J.-B.; Geng, H.-Q.; Wang, W.; Qi, X.; Ying, J.; Wu, X.-F. J. Catal. 2018, 365, 10.

    36. [36]

      (a) Wu, X. F.; Oschatz, S.; Sharif, M.; Flader, A.; Krey, L.; Beller, M.; Langer, P. Adv. Synth. Catal. 2013, 355, 3581.
      (b) Xu, J.-X.; Wu, X.-F. Adv. Synth. Catal. 2018, 360, 3376.
      (c) Zhu, F.; Li, Y.; Wang, Z.; Wu, X.-F. ChemCatChem 2016, 8, 3710.

    37. [37]

      Wu, X. F.; Oschatz, S.; Sharif, M.; Langer, P. Synthesis 2015, 47, 2641.  doi: 10.1055/s-00000084

    38. [38]

      (a) Li, R.; Qi, X. X.; Wu, X. F. Org. Biomol. Chem. 2017, 15, 6905.
      (b) Qi, X. X.; Li, R.; Wu, X. F. RSC Adv. 2016, 6, 62810.
      (c) Qi, X.; Li, R.; Li, H.-P.; Peng, J.-B.; Ying, J.; Wu, X.-F. ChemCatChem 2018, 10, 3415.

    39. [39]

      Li, W. F.; Wu, X. F. J. Org. Chem. 2014, 79, 10410.  doi: 10.1021/jo5020118

    40. [40]

      Chen, J. B.; Natte, K.; Spannenberg, A.; Neumann, H.; Beller, M.; Wu, X. F. Chem.-Eur. J. 2014, 20, 14189.  doi: 10.1002/chem.v20.44

    41. [41]

      Chen, J. B.; Natte, K.; Wu, X. F. J. Organomet. Chem. 2016, 803, 9.  doi: 10.1016/j.jorganchem.2015.12.010

    42. [42]

      Wang, Z. C.; Li, Y. H.; Zhu, F. X.; Wu, X. F. Adv. Synth. Catal. 2016, 358, 2855.  doi: 10.1002/adsc.201600395

    43. [43]

      (a) Wang, Z. C.; Yin, Z. P.; Zhu, F. X.; Li, Y. H.; Wu, X. F. ChemCatChem 2017, 9, 3637.
      (b) Wang, Z. C.; Zhu, F. X.; Li, Y. H.; Wu, X. F. ChemCatChem 2017, 9, 94.

    44. [44]

      (a) Wang, Z. C.; Yin, Z. P.; Wu, X. F. Org. Lett. 2017, 19, 4680.
      (b) Yin, Z.; Wang, Z.; Wu, X.-F. Org. Biomol. Chem. 2018, 16, 3707.

    45. [45]

      Qi, X. X.; Li, H. P.; Wu, X. F. Chem. Asian J. 2016, 11, 2453.  doi: 10.1002/asia.201600873

    46. [46]

      Chen, J. B.; Feng, J. B.; Natte, K.; Wu, X. F. Chem.-Eur. J. 2015, 21, 16370.  doi: 10.1002/chem.v21.46

    47. [47]

      Chen, J. B.; Natte, K.; Wu, X. F. Tetrahedron Lett. 2015, 56, 6413.  doi: 10.1016/j.tetlet.2015.09.142

    48. [48]

      Wang, Z.; Yin, Z.; Wu, X.-F. Chem. Commun. 2018, 54, 4798.  doi: 10.1039/C8CC01784K

    49. [49]

      (a) Ying, J.; Zhou, C.; Wu, X.-F. Org. Biomol. Chem. 2018, 16, 1065.
      (b) Jiang, L.-B.; Qi, X.; Wu, X.-F. Tetrahedron Lett. 2016, 57, 3368.
      (c) Li, C.-L.; Zhang, W.-Q.; Qi, X.; Peng, J.-B.; Wu, X.-F. J. Organomet. Chem. 2017, 838, 9.
      (d) Wang, H.; Ying, J.; Lai, M.; Qi, X.; Peng, J.-B.; Wu, X.-F. Adv. Synth. Catal. 2018, 360, 1693.

    50. [50]

      Qi, X.; Ai, H.-J.; Zhang, N.; Peng, J.-B.; Ying, J.; Wu, X.-F. J. Catal. 2018, 362, 74.  doi: 10.1016/j.jcat.2018.03.028

  • 加载中
    1. [1]

      Zhen ZhangXue-ling ChenXiu-Mei XieTian-Yu GaoJing QinJun-Jie LiChao FengDa-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056

    2. [2]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    3. [3]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    4. [4]

      Fengqing WangChangxing QiChunmei ChenQin LiQingyi TongWeiguang SunZhengxi HuMinyan WangHucheng ZhuLianghu GuYonghui Zhang . Discovery and enantioselective total synthesis of antitumor agent asperfilasin A via a regio- and diastereoselective Nazarov cyclization. Chinese Chemical Letters, 2025, 36(6): 110252-. doi: 10.1016/j.cclet.2024.110252

    5. [5]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    6. [6]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    7. [7]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    8. [8]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    9. [9]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    10. [10]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    11. [11]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    12. [12]

      Yue SunYingnan ZhuJiahang SiRuikang ZhangYalan JiJinjie FanYuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012

    13. [13]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    14. [14]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    15. [15]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    16. [16]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    17. [17]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    18. [18]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    19. [19]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    20. [20]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

Metrics
  • PDF Downloads(37)
  • Abstract views(1680)
  • HTML views(201)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return