Citation: Fu Xiaofei, Zhao Wenxian. Progress in Difunctionalization of Alkenes[J]. Chinese Journal of Organic Chemistry, ;2019, 39(3): 625-647. doi: 10.6023/cjoc201808031 shu

Progress in Difunctionalization of Alkenes

  • Corresponding author: Zhao Wenxian, zhwx2595126@163.com
  • Received Date: 27 August 2018
    Revised Date: 1 November 2018
    Available Online: 25 March 2018

    Fund Project: the Key Science Research of Education Committee in Henan Province 16A150020Project supported by the National Natural Science Foundation of China (Nos. 20972091, 21172139) and the Key Science Research of Education Committee in Henan Province (No. 16A150020)the National Natural Science Foundation of China 21172139the National Natural Science Foundation of China 20972091

Figures(95)

  • As an important kind of organic chemical reaction, difunctionalization of alkenes can not only synthesize multi-site reaction products effectively in one step, but also transform the starting material into other compounds that containing biological activity or drug activity. At the same time, it provides more methods for the construction of chemical structure diversity, so it is very important to develop the bifunctionalization of alkenes. In this paper, the bifunctionalization of various alkenes in recent 12 years is reviewed. It can be divided into three parts:copper-catalyzed difunctionalization of alkenes, other transition metal-catalyzed difunctionalization of alkenes, and non-metal-catalyzed difunctionalization of alkenes. The prospects of this reaction are also discussed.
  • 加载中
    1. [1]

      (a) Gaich, T.; Baran, P. S. J. Org. Chem. 2010, 75, 4657.
      (b) Wender, P. A. Chem. Rev. 1996, 96, 1.

    2. [2]

      (a) Xu, L.; Mou, X. Q.; Chen, Z. M.; Wang, S. H. Chem. Commun. 2014, 50, 10676.
      (b) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318.
      (c) Jensen, K. H.; Sigman, M. S. Org. Biomol. Chem. 2008, 6, 4083.
      (d) Chemler, S. R. Org. Biomol. Chem. 2009, 7, 3009.
      (e) Muniz, K. Angew. Chem., Int. Ed. 2009, 48, 9412.
      (f) Li, G.; Kotti, S. R. S. S.; Timmons, C. Eur. J. Org. Chem. 2007, 2745.

    3. [3]

      (a) Zhou, M. B.; Wang, C. Y.; Song, R. J.; Liu, Y.; Wei, W. T.; Li, J. H. Chem. Commun. 2013, 49, 10817.
      (b) Mu, X.; Wu, T.; Wang, H. Y. Guo, Y. L.; Liu, G. J. Am. Chem. Soc. 2012, 134, 878.
      (c) Wu, T.; Mu, X.; Liu, G. Angew. Chem., Int. Ed. 2011, 50, 12578.
      (d) Zhou, S. L.; Guo, L. N.; Wang, S.; Duan, X. H. Chem. Commun. 2014, 50, 3589.

    4. [4]

      (a) Keith, J. A; Henry, P. M. Angew. Chem., Int. Ed. 2009, 48, 9038.
      (b) McDonald, R. I.; Liu, G. S.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.

    5. [5]

      (a) Zhang, X.; You, S. L. Chem 2017, 3, 919.
      (b) Lucet, D.; Le Gall, T.; Mioskowski, C. Angew. Chem., Int. Ed. 1998, 37, 2580.

    6. [6]

      Yuan, W.; Du, H.; Zhao, B.; Shi, Y. Org. Lett. 2007, 9, 2589.  doi: 10.1021/ol071105a

    7. [7]

      Du, H.; Zhao, B.; Yuan, W.; Shi, Y. Org. Lett. 2008, 10, 4231.  doi: 10.1021/ol801605w

    8. [8]

      Zhao, B.; Peng, X, ; Cui, S.; Shi, Y. J. Am. Chem. Soc. 2010, 132, 11009.  doi: 10.1021/ja103838d

    9. [9]

      Zhao, B.; Peng, X.; Zhu, Y.; Ramirez, T. A.; Comwall, R. G.; Shi, Y. J. Am. Chem. Soc. 2011, 133, 20890.  doi: 10.1021/ja207691a

    10. [10]

      Zhu, Y. G.; Shi, Y. Chem.-Eur. J. 2014, 20, 13901.  doi: 10.1002/chem.v20.43

    11. [11]

      Sequeira, F. C.; Turnpenny, B. W.; Chemler, S. R. Angew. Chem. 2010, 122, 6509.  doi: 10.1002/ange.201003499

    12. [12]

      Wang, Y. F.; Zhu, X.; Chiba, S. J. Am. Chem. Soc. 2012, 134, 3679.  doi: 10.1021/ja2120629

    13. [13]

      Turnpenny, B. W.; Chemler, S. R. Chem. Sci. 2014, 5, 1786.  doi: 10.1039/C4SC00237G

    14. [14]

      Karyakarte, S. D.; Sequeira, F. C.; Zibreg, G. H.; Huang, G. Q.; Matthew, J. P.; Ferreira, M. M. M.; Chemler, S. R. Tetrahedron Lett. 2015, 56, 3686.  doi: 10.1016/j.tetlet.2015.01.171

    15. [15]

      Shen, K.; Wang, Q. Chem. Sci. 2015, 6, 4279.  doi: 10.1039/C5SC00897B

    16. [16]

      Khoder, Z. M.; Wong, C. E.; Chemler, S. R. ACS Catal. 2017, 7, 4775.  doi: 10.1021/acscatal.7b01362

    17. [17]

      Weng, S. S.; Hsieh, K. Y.; Zeng, Z. J. Zhang, J. W. Tetrahedron Lett. 2017, 58, 670.  doi: 10.1016/j.tetlet.2017.01.015

    18. [18]

      Wang, F. L.; Dong, X. Y.; Lin, J. S.; Zeng, Y.; Jiao, G. Y.; Gu, Q. S.; Guo, X. Q.; Ma, C. L.; Liu, X. Y. Chem 2017, 3, 979.  doi: 10.1016/j.chempr.2017.10.008

    19. [19]

      Chen, M. M.; Wang, L. J.; Ren, P. X.; Hou, X. Y.; Zhang, F.; Han, M. Nan.; Li, W. Org. Lett. 2018, 20, 510.  doi: 10.1021/acs.orglett.7b03401

    20. [20]

      Fu, S. M.; Yang, H. H.; Li, G. Q.; Deng, Y. F.; Jiang, H. F.; Zeng, W. Org. Lett. 2015, 17, 1018.  doi: 10.1021/acs.orglett.5b00131

    21. [21]

      Kinnel, R. B.; Gehrken, H. P.; Scheuer, P. J. J. Am. Chem. Soc. 1993, 115, 3376.  doi: 10.1021/ja00061a065

    22. [22]

      Li, S. Q.; Xiong, P.; Zhu, L.; Qian, X. Y.; Xu, H. C. Eur. J. Org. Chem. 2016, 20, 3449.

    23. [23]

      Shen, K.; Wang, Q. Chem. Sci. 2017, 8, 8265.  doi: 10.1039/C7SC03420B

    24. [24]

      Shen, K.; Wang, Q. J. Am. Chem. Soc. 2017, 139, 13110.  doi: 10.1021/jacs.7b06852

    25. [25]

      Pan, G. H.; Ouyang, X. H.; Hu, M.; Xie, Y. X.; Li, J. H. Adv. Synth. Catal. 2017, 15, 2564.  doi: 10.1002/adsc.201700365

    26. [26]

      Zhang, Y, L.; Wang, M.; Cao, P.; Liao, J. Acta Chim. Sinica 2017, 75, 794(in Chinese).
       

    27. [27]

      Gockel, S. N.; Buchanan, T. L.; Hull, K. L. J. Am. Chem. Soc. 2018, 140, 58.  doi: 10.1021/jacs.7b10529

    28. [28]

      Zeng, W.; Chemler, S. R. J. Am. Chem. Soc. 2007, 129, 12948.  doi: 10.1021/ja0762240

    29. [29]

      Miao, L.; Haque, I.; Manzoni, M. R.; Tham, W. S.; Chemler, S. R. Org. Lett. 2010, 12, 4739.  doi: 10.1021/ol102233g

    30. [30]

      Kaneko, K.; Yoshino, T.; Matsunaga, S.; Kanai, M. Org. Lett. 2013, 15, 2502.  doi: 10.1021/ol4009848

    31. [31]

      Wang, D. H.; Wu, L. Q.; Wang, F.; Wan, X. L.; Chen, P. H.; Lin, Z. Y.; Liu, G. S. J. Am. Chem. Soc. 2017, 139, 6811.  doi: 10.1021/jacs.7b02455

    32. [32]

      Miller, Y.; Miao, L.; Hosseini, A. S.; Chemler, R. S. J. Am. Chem. Soc. 2012, 134, 12149.  doi: 10.1021/ja3034075

    33. [33]

      Zhou, S. L.; Guo, L. N.; Wang, H.; Duan, X. H. Chem.-Eur. J. 2013, 19, 12970.  doi: 10.1002/chem.v19.39

    34. [34]

      Zhou, B.; Hou, W.; Yang, Y.; Feng, H.; Li, Y. Org. Lett. 2014, 167, 1322.  doi: 10.1002/chin.201434141

    35. [35]

      Shi, L.; Wang, Y.; Yang, H.; Fu, H. Org. Biomol. Chem. 2014, 12, 4070.  doi: 10.1039/C4OB00576G

    36. [36]

      Li, X.; Jian, X.; Zhang, P.; Gao, Y.; Wu, J.; Tang, G.; Zhao, Y. Synlett 2014, 25, 2009.  doi: 10.1055/s-00000083

    37. [37]

      Schlosser, M. Angew. Chem., Int. Ed. 2006, 45, 5432.  doi: 10.1002/(ISSN)1521-3773

    38. [38]

      Liang, Z.; Wang, F.; Chen, P.; Liu, G. S. Org. Lett. 2015, 17, 2438.  doi: 10.1021/acs.orglett.5b00939

    39. [39]

      Egami, H.; Shimizu, R.; Kawamura, S.; Sodeoka, M. Angew. Chem., Int. Ed. 2013, 52, 4000.  doi: 10.1002/anie.v52.14

    40. [40]

      Yang, F.; Klumphu, P.; Liang, Y. M.; Lipshutz, B. H. Chem. Commun. 2014, 50, 936.  doi: 10.1039/C3CC48131J

    41. [41]

      Egami, H.; Kawamura, S.; Miyazaki, A.; Sodeoka, M. Angew. Chem., Int. Ed. 2013, 52, 7841.  doi: 10.1002/anie.v52.30

    42. [42]

      Lin, J. S.; Liu, X. G.; Zhu, X. L.; Tan, B.; Liu, X. Y. J. Org. Chem. 2014, 79, 7084.  doi: 10.1021/jo5012619

    43. [43]

      Lin, J. S.; Xiong, Y. P.; Ma, C. L.; Zhao, L. J.; Tan, B.; Liu, X. Y. Chem.-Eur. J. 2014, 20, 1332.  doi: 10.1002/chem.v20.5

    44. [44]

      Lin, J. S.; Dong, X. Y.; Li, T. T.; Jiang, N. C.; Tan, B.; Liu, X. Y. J. Am. Chem. Soc. 2016, 138, 9357.  doi: 10.1021/jacs.6b04077

    45. [45]

      Shen, K.; Wang, Q. Org. Chem. Front. 2016, 3, 222.  doi: 10.1039/C5QO00353A

    46. [46]

      Lin, J. S.; Wang, F. L.; Dong, X. Y.; He, W. W.; Yuan, Y.; Chen, S.; Liu, X. Y. Nat. Commun. 2017, 8, 14841.  doi: 10.1038/ncomms14841

    47. [47]

      Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2012, 134, 12462.  doi: 10.1021/ja305840g

    48. [48]

      Zhu, R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2013, 52, 12655.  doi: 10.1002/anie.201307790

    49. [49]

      Jiang, X. Y.; Qing, F. L. Angew. Chem., Int. Ed. 2013, 52, 14177.  doi: 10.1002/anie.201307595

    50. [50]

      Ye, J. H.; Song, L.; Zhou, W. J.; Ju, T.; Yin, Zh. B.; Yan, S. S.; Zhang, Z.; Li, J.; Yu, D. G. Angew. Chem., Int Ed. 2016, 34, 10022.  doi: 10.1002/chin.201651141

    51. [51]

      Cheng, Y. F.; Dong, X. Y.; Gu, Q. S.; Yu, Z. L.; Liu, X. Y. Angew. Chem. 2017, 30, 9009.  doi: 10.1002/ange.201702925

    52. [52]

      Li, X. T.; Gu, Q. S.; Dong, X. Y.; Meng, X.; Liu, X. Y. Angew. Chem., Int. Ed. 2018, 57, 7668.  doi: 10.1002/anie.v57.26

    53. [53]

      Li, Z. L.; Li, X. H.; Wang, N.; Yang, N. Y.; Liu, X. Y. Angew. Chem., Int. Ed. 2016, 55, 15100.  doi: 10.1002/anie.201608198

    54. [54]

      Liu, Z. C.; Bai, Y. H.; Zhang, J.; Yu, Y. Q.; Tan, Z.; Zhu, G. G. Chem. Commun. 2017, 53, 6440.  doi: 10.1039/C7CC02537H

    55. [55]

      Fu, L.; Zhou, S.; Wan, X. L.; Chen, P. H.; Liu, G. S. J. Am. Chem. Soc. 2018, 140, 10965.  doi: 10.1021/jacs.8b07436

    56. [56]

      (a) Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed. 2005, 44, 5188.
      (b) Drivel, T. G. Org. Biomol. Chem. 2010, 8, 3831.
      (c) Fumagalli, G.; Rabet, P. T. G.; Boyd, S.; Greaney, M. F. Angew. Chem., Int. Ed. 2015, 54, 11481.

    57. [57]

      (a) Rong, J.; Han, J.; Dong, L.; Tan, Y.; Yang, H.; Feng, L.; Wang, Q. W.; Meng, R.; Zhao, J.; Wang, S. Q.; Chen. X. J. Am. Chem. Soc. 2014, 136, 17468.
      (b) Gramlich, P. M. E.; Wirges, C. T.; Manetto, A.; Carell, T. Angew. Chem., Int. Ed. 2008, 47, 8350.

    58. [58]

      Yin, H.; Wang, T.; Jiao, N. Org. Lett. 2014, 16, 2302.  doi: 10.1021/ol500793c

    59. [59]

      Zhu, L.; Yu, H.; Xu, Z.; Jiang, X.; Lin, L.; Wang, R. Org. Lett. 2014, 16, 1562.  doi: 10.1021/ol403687k

    60. [60]

      Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 8069.  doi: 10.1021/jacs.5b04821

    61. [61]

      Lu, M. Z.; Wang, C. Q.; Loh, T. P. Org. Lett. 2015, 17, 6110.  doi: 10.1021/acs.orglett.5b03130

    62. [62]

      Zhou, H.; Jian, W. J.; Qian, B.; Ye, C. Q.; Li, D. L.; Zhou, J.; Bao, H. L. Org. Lett. 2017, 19, 6120.  doi: 10.1021/acs.orglett.7b02982

    63. [63]

      Bunescu, A.; Ha, T. M.; Wang, Q.; Zhu, J. P. Angew. Chem., Int. Ed. 2017, 56, 10555.  doi: 10.1002/anie.v56.35

    64. [64]

      Xu, L.; Mou, X. Q.; Chen, Z. M.; Wang, S. H. Chem. Commun. 2014, 50, 10676.  doi: 10.1039/C4CC04640D

    65. [65]

      Wang, D. H.; Wang, F.; Chen, P. H.; Lin, Z. Y.; Liu, G. S. Angew. Chem., Int. Ed. 2017, 8, 2054.  doi: 10.1002/anie.201405937

    66. [66]

      Qian, Bo.; Xiong, H. G.; Zhu, N. B.; Ye, C. Q.; Jian, W. J.; Bao, H. L. Tetrahedron Lett. 2016, 57, 3400.  doi: 10.1016/j.tetlet.2016.06.087

    67. [67]

      Hemric, B. N.; Shen, K.; Wang, Q. J. Am. Chem. Soc. 2016, 138, 5813.  doi: 10.1021/jacs.6b02840

    68. [68]

      Ha, T. M.; Wang, Q.; Zhu, J. P. Chem. Commun. 2016, 52, 11100.  doi: 10.1039/C6CC06356J

    69. [69]

      Williamson, K. S.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 4570.  doi: 10.1021/ja1013536

    70. [70]

      Liu, G. S.; Zhang, Y. Q.; Yuan, Y. A.; Xu, H. J. Am. Chem. Soc. 2013, 135, 3343.  doi: 10.1021/ja311923z

    71. [71]

      Lu, D. F.; Zhu, C. L.; Jia, Z. X.; Xu, H. J. Am. Chem. Soc. 2014, 136, 13186.  doi: 10.1021/ja508057u

    72. [72]

      Yuan, Y. A.; Lu, D. F.; Chen, Y. R.; Xu, H. Angew. Chem. 2016, 128, 544.  doi: 10.1002/ange.201507550

    73. [73]

      Qian, B.; Chen, S. W.; Wang, T.; Zhang, X. H.; Bao, H. L. J. Am. Chem. Soc. 2017, 139, 13076.  doi: 10.1021/jacs.7b06590

    74. [74]

      Wang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2011, 133, 19080.  doi: 10.1021/ja2092689

    75. [75]

      Olson, D. E.; Su, J. Y.; Roberts, D. A.; Bois, J. D. J. Am. Chem. Soc. 2014, 136, 13506.  doi: 10.1021/ja506532h

    76. [76]

      Piou, T.; Rovis, T. Nature 2015, 527, 86.  doi: 10.1038/nature15691

    77. [77]

      Ciesielski, J.; Dequirez, G.; Retailleau, P.; Gandon, V.; Dauban, P. Chem.-Eur. J. 2016, 22, 9338.  doi: 10.1002/chem.201600393

    78. [78]

      Fu, N. K.; Sauer, G. S.; Lin, S. J. Am. Chem. Soc. 2017, 139, 15548.  doi: 10.1021/jacs.7b09388

    79. [79]

      Sun, H.; Cui, B.; Duan, L. L.; Li, Y. M. Org. Lett. 2017, 19, 1520.  doi: 10.1021/acs.orglett.7b00284

    80. [80]

      Singh, A. K.; Chawla, R.; Yadav, L. D. S. Tetrahedron Lett. 2014, 55, 4742.  doi: 10.1016/j.tetlet.2014.06.086

    81. [81]

      Guo, S.; Cong, F.; Guo, R.; Wang, L.; Tang, P. P. Nat. Chem. 2017, 9, 546.  doi: 10.1038/nchem.2711

    82. [82]

      Fumagalli, G.; Boyd, S.; Greaney, M. F. Org. Lett. 2013, 15, 4398.  doi: 10.1021/ol401940c

    83. [83]

      Sipos, G.; Ou, A.; Skelton, B. W.; Falivene, L.; Cavallo, L.; Dorta, R. Chem.-Eur. J. 2016, 22, 6939.  doi: 10.1002/chem.201600378

    84. [84]

      Conway, J. H.; Rovis, T. J. Am. Chem. Soc. 2018, 140, 135.  doi: 10.1021/jacs.7b11455

    85. [85]

      Martinez, C.; Wu, Y. C.; Weinstein, A. B.; Stahl, S. S.; Liu, G. S.; Muniz, K. J. Org. Chem. 2013, 78, 6309.  doi: 10.1021/jo400671q

    86. [86]

      Hata, K.; He, Z. H.; Daniliuc, C. G.; Itami, K.; Studer, A. Chem. Commun. 2014, 50, 463.  doi: 10.1039/C3CC47350C

    87. [87]

      Ramella, V.; He, Z. H.; Daniliuc, C. G.; Studer, A. Org. Lett. 2015, 17, 664.  doi: 10.1021/ol503689r

    88. [88]

      Yu, F.; Chen, P. H.; Liu, G. S. Chem. Commun. 2016, 52, 11100.  doi: 10.1039/C6CC06356J

    89. [89]

      Zheng, J. H.; Chen, P.; Yuan, Y. F.; Cheng, J. J. J. Org. Chem. 2017, 82, 5790.  doi: 10.1021/acs.joc.7b00598

    90. [90]

      Karnakanti, S.; Zang, Z. L.; Zhao, S.; Shao, P. L.; Hu, P.; He, Y. Chem. Commun. 2017, 53, 11205.  doi: 10.1039/C7CC06448A

    91. [91]

      Qi, X. X.; Chen, C. H.; Hou, Ch. Q.; Fu, L.; Chen, P. H.; Liu, G. S. J. Am. Chem. Soc. 2018, 140, 7415.  doi: 10.1021/jacs.8b03767

    92. [92]

    93. [93]

      Lin, J. S.; Yu, P.; Huang, L.; Zhang, P.; Tan, B.; Liu, X. Y. Angew. Chem., Int. Ed. 2015, 54, 7847.  doi: 10.1002/anie.201501762

    94. [94]

      Yang, N. Y.; Li, Z. L.; Ye, L.; Tan, B.; Liu, X. Y. Chem. Commun. 2016, 52, 9052.  doi: 10.1039/C6CC00364H

    95. [95]

      Tsuji, N.; Kennemur, J. L.; Buyck, T.; Lee, S.; Prevost, S.; Kaib, P. S. J.; Bykov, D.; Fares, C.; List, B. Science 2018, 359, 1501.  doi: 10.1126/science.aaq0445

    96. [96]

      Lu, Q. Q.; Zhang, J.; Wei, F. L.; Qi, Y.; Wang, H. M.; Liu, Z. L.; Lei, A. W. Angew. Chem., Int. Ed. 2013, 52, 7156.  doi: 10.1002/anie.201301634

    97. [97]

      Chen, H.; Kaga, A.; Chiba, S. Org. Lett. 2014, 16, 6136.  doi: 10.1021/ol503000c

    98. [98]

      Hong, K. B; Johnston, J. N. Org. Lett. 2014, 16, 3804.  doi: 10.1021/ol501693j

    99. [99]

      Danneman, M. W.; Hong, K. B.; Johnston, J. N. Org. Lett. 2015, 17, 2558.  doi: 10.1021/acs.orglett.5b01177

    100. [100]

      Xia, X. F.; Gu, Z.; Liu, W. T.; Wang, H. J.; Xia, Y. M.; Gao, H. Y.; Liu, X.; Liang, Y. M. J. Org. Chem. 2015, 80, 290.  doi: 10.1021/jo502327r

    101. [101]

      Fei, J.; Wang, Z.; Cai, Z. R.; Sun, H.; Cheng, X. Adv. Synth. Catal. 2015, 357, 4063.  doi: 10.1002/adsc.201500646

    102. [102]

      Zhou, S. F.; Pan, X. Q.; Zhou, Z. H.; Shoberu, A.; Zou, J. P. J. Org. Chem. 2015, 80, 3682.  doi: 10.1021/acs.joc.5b00123

    103. [103]

      Huang, L.; Zheng, S. C.; Tan, B.; Liu, X. Y. Org. Lett. 2015, 17, 1589.  doi: 10.1021/acs.orglett.5b00479

    104. [104]

      Chumnanvej, N.; Katrun, P.; Pohmakotr, M.; Reutrakul, V.; Soorukram, D.; Kuhakarn, C. Chin. J. Chem. 2016, 34, 830.  doi: 10.1002/cjoc.v34.8

    105. [105]

      Zhang, Z. X.; Martinez, H.; Dolbier. W. R. J. Org. Chem. 2017, 82, 2589.  doi: 10.1016/j.jfluchem.2011.05.001

    106. [106]

      Zhou, S. F.; Song, T.; Chen, H.; Liu, Z. L.; Shen, H. G.; Li, C. Z. Org. Lett. 2017, 19, 698.  doi: 10.1021/acs.orglett.6b03870

    107. [107]

      Muñiz, K.; Barreiro, L.; Romero, R. M.; Martínez, C. J. Am. Chem. Soc. 2017, 139, 4354.  doi: 10.1021/jacs.7b01443

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    4. [4]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    5. [5]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    6. [6]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    10. [10]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    11. [11]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

    12. [12]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    13. [13]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    20. [20]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

Metrics
  • PDF Downloads(544)
  • Abstract views(10473)
  • HTML views(3857)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return