Citation: Huang Hang, Wang Xi, Wang Jianbo. Research Developments of the Construction of Chiral Center Based on Fluoroalkyl Radical Reactions[J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 1-14. doi: 10.6023/cjoc201808030 shu

Research Developments of the Construction of Chiral Center Based on Fluoroalkyl Radical Reactions

  • Corresponding author: Wang Xi, cccewangxi@hnu.edu.cn Wang Jianbo, wangjb@pku.edu.cn
  • Received Date: 27 August 2018
    Revised Date: 21 November 2018
    Available Online: 30 January 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21332002)the National Natural Science Foundation of China 21332002

Figures(18)

  • Fluorine-containing organic compounds have been widely applied in various fields, such as pharmacy, agrochemicals, materials science, etc. Trifluoromethyl, difluoromethyl and perfluoroalkyl groups represent the typical fluorine-containing functional groups. Hence, the development of highly efficient methods for introducing fluoroalkyl groups is of primary importance. In recent years, the reactions based on fluoroalkyl radicals have been developed into competent methods for introducing fluoroalkyl groups. On the other hand, the synthesis of the chiral molecules containing fluoroalkyl groups has attracted considerable attentions. However, attributed to the high reactivity of the fluoroalkyl radicals, the control of the reaction selectivity is difficult. Particularly, so far there have been only limited reports on the enantiocontrol of the reaction in this regard and the corresponding review of the field still lacks. This review summarizes the research on the asymmetric synthesis based on fluoroalkyl radical reactions developed over the past 20 years. The review introduces the selectivities, scope and mechanism of various reactions. It is divided into three different parts according to the type of the reaction: (1) asymmetric fluoroalkylation of enol/enamine intermediate through fluoroalkyl radical, (2) asymmetric difunctionalization of olefin through fluoroalkyl radical, (3) stereoselective 1, 2-shift of vinylboronate complexes through fluoroalkyl radical.
  • 加载中
    1. [1]

      (a) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470.
      (b) Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed. 2005, 44, 214.

    2. [2]

      Lehmann, F. Arch. Exp. Pathol. Pharmakol. 1928, 130, 250.  doi: 10.1007/BF01868192

    3. [3]

      Kirsch, P. Modern Fluoroorganic Chemistry, Synthesis, Reactivity, Applications, Wiley-VCH, Weinheim, 2004.

    4. [4]

      (a) Ma, J.-A.; Cahard, D. Chem. Rev. 2004, 104, 6119.
      (b) Ma, J.-A.; Cahard, D. Chem. Rev. 2008, 108, PR1.
      (c) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111, 455.

    5. [5]

      Dolbier, W. R. Chem. Rev. 1996, 96, 1557.  doi: 10.1021/cr941142c

    6. [6]

      (a) Studer, A. Angew. Chem., Int. Ed. 2012, 51, 8950.
      (b) Wang, X.; Zhang, Y.; Wang, J. Sci. Sin. 2012, 42, 1417.

    7. [7]

      Pan, X.; Xia, H.; Wu, J. Org. Chem. Front. 2016, 3, 1163.  doi: 10.1039/C6QO00153J

    8. [8]

      Wang, F.; Chen, P.; Liu, G. Acc. Chem. Res. 2018, 51, 2036.  doi: 10.1021/acs.accounts.8b00265

    9. [9]

      (a) Fessenden, R. W.; Schuler, R. H. J. Chem. Phys. 1965, 43, 2704.
      (b) Krusic, P. J.; Bingham, R. C. J. Am. Chem. Soc. 1976, 98, 230.

    10. [10]

      (a) Wang, S.-M.; Han, J.-B.; Zhang, C.-P.; Qin, H.-L.; Xiao, J.-C. Tetrahedron 2015, 71, 7949.
      (b) Chatterjee, T.; Iqbal, N.; You, Y.; Cho, E. J. Acc. Chem. Res. 2016, 49, 2284.
      (c) Wang, X.; Studer, A. Acc. Chem. Res. 2017, 50, 1712.
      (d) Barata-Vallejo, S.; Cooke, M. V.; Postigo, A. ACS Catal. 2018, 8, 7287.

    11. [11]

      (a) Iseki, K.; Nagai, T.; Kobayashi, Y. Tetrahedron Lett. 1993, 34, 2169.
      (b) Iseki, K.; Nagai, T.; Kobayashi, Y. Tetrahedron: Asymmetry 1994, 5, 961.

    12. [12]

      Itoh, Y.; Mikami, K. Tetrahedron 2006, 62, 7199.  doi: 10.1016/j.tet.2006.03.115

    13. [13]

      Nagib, D. A.; Scott, M. E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 10875.  doi: 10.1021/ja9053338

    14. [14]

      Woźniak, Ł.; Murphy, J. J.; Melchiorre, P. J. Am. Chem. Soc. 2015, 137, 5678.  doi: 10.1021/jacs.5b03243

    15. [15]

      Herrmann, A. T.; Smith, L. L.; Zakarian, A. J. Am. Chem. Soc. 2012, 134, 6976.  doi: 10.1021/ja302552e

    16. [16]

      Huo, H.; Huang, X.; Shen, X.; Harmsa, K.; Meggers, E. Synlett 2016, 27, 749.

    17. [17]

      Liu, J.; Ding, W.; Zhou, Q.-Q.; Liu, D.; Lu, L.-Q.; Xiao, W.-J. Org. Lett. 2018, 20, 461.  doi: 10.1021/acs.orglett.7b03826

    18. [18]

      Yajima, T.; Nagano, H. Org. Lett. 2007, 9, 2513.  doi: 10.1021/ol0707620

    19. [19]

      Zhu, R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2013, 52, 12655.  doi: 10.1002/anie.201307790

    20. [20]

      Miller, Y.; Miao, L.; Hosseini, A. S.; Chemler, S. R. J. Am. Chem. Soc. 2012, 134, 12149.  doi: 10.1021/ja3034075

    21. [21]

      Wang, F.; Wang, D.; Wan, X.; Wu, L.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2016, 138, 15547.  doi: 10.1021/jacs.6b10468

    22. [22]

      Wu, L.; Wang, F.; Wan, X.; Wang, D.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2017, 139, 2904.  doi: 10.1021/jacs.6b13299

    23. [23]

      Fu, L.; Zhou, S.; Wan, X.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2018, 140, 10965.  doi: 10.1021/jacs.8b07436

    24. [24]

      Yu, P.; Lin, J.-S.; Li, L.; Zheng, S.-C.; Xiong, Y.-P.; Zhao, L.-J.; Tan, B.; Liu, X.-Y. Angew. Chem., Int. Ed. 2014, 53, 11890.  doi: 10.1002/anie.201405401

    25. [25]

      Li, T.; Yu, P.; Du, Y.-M.; Lin, J.-S.; Zhi, Y.; Liu, X.-Y. J. Fluorine Chem. 2017, 203, 210.  doi: 10.1016/j.jfluchem.2017.03.008

    26. [26]

      Lin, J.-S.; Dong, X.-Y.; Li, T.-T.; Jiang, N.-C.; Tan, B.; Liu, X.-Y. J. Am. Chem. Soc. 2016, 138, 9357.  doi: 10.1021/jacs.6b04077

    27. [27]

      Lin, J.-S.; Wang, F.-L.; Dong, X.-Y.; He, W.-W.; Yuan, Y.; Chen, S.; Liu, X.-Y. Nat. Commun. 2017, 8, 14841.  doi: 10.1038/ncomms14841

    28. [28]

      Cheng, Y.-F.; Dong, X.-Y.; Gu, Q.-S.; Yu, Z.-L.; Liu X.-Y. Angew. Chem., Int. Ed. 2017, 56, 8883.  doi: 10.1002/anie.v56.30

    29. [29]

      Li, X.-T.; Gu, Q.-S.; Dong, X.-Y.; Meng, X.; Liu, X.-Y. Angew. Chem., Int. Ed. 2018, 57, 7668.  doi: 10.1002/anie.v57.26

    30. [30]

      Kischkewitz, M.; Okamoto, K.; Mück-Lichtenfeld, C.; Studer, A. Science 2017, 355, 936.  doi: 10.1126/science.aal3803

    31. [31]

      Gerleve, C.; Kischkewitz, M.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 2441.  doi: 10.1002/anie.201711390

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    4. [4]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    5. [5]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    6. [6]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    7. [7]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    8. [8]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    9. [9]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    10. [10]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    11. [11]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    12. [12]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    13. [13]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    14. [14]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    15. [15]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    16. [16]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    17. [17]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    18. [18]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    19. [19]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    20. [20]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

Metrics
  • PDF Downloads(52)
  • Abstract views(2190)
  • HTML views(507)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return