Citation: Han Qiuyan, Zhao Chenglong, Zhang Chengpan. Progress on Trifluoroethylation Reactions Using Aryl(trifluoroethyl)iodonium Salts[J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 84-94. doi: 10.6023/cjoc201808029 shu

Progress on Trifluoroethylation Reactions Using Aryl(trifluoroethyl)iodonium Salts

  • Corresponding author: Zhang Chengpan, cpzhang@whut.edu.cn; zhangchengpan1982@hotmail.com
  • Received Date: 25 August 2018
    Revised Date: 19 September 2018
    Available Online: 19 January 2018

    Fund Project: the National Natural Science Foundation of China 21602165Project supported by the National Natural Science Foundation of China (21602165), the "Chutian Scholar" Program from Department of Education of Hubei Province, and the "Hundred Talent" Program of Hubei Province

Figures(26)

  • Transition metal-free and metal-catalyzed reactions using aryl(trifluoroethyl)iodonium salts as the trifluoroethylation reagents are summarized in this review. A large number of different types of N-, O-, S-, and C-nucleophiles were readily trifluoroethylated in these reactions under mild conditions. The results revealed that aryl(trifluoroethyl)iodonium salts possess much higher electrophilic reactivity than the other CH2CF3 sources. Especially, aryl(trifluoroethyl)iodonium bis(trifluoromethanesulfonyl)amides are stable and slightly soluble in water, which were successfully applied in the aqueous trifluoroethylation of amino acid derivatives and peptides. The utilization of aryl(trifluoroethyl)iodonium salts for aromatic trifluoroethylation has promisingly solved the problems that arise from the other reagents. These achievements have also demonstrated the synthetic possibilities of direct trifluoroethylation using aryl(trifluoroethyl)iodonium salts under transition-metal catalysis.
  • 加载中
    1. [1]

      (a) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, 2nd ed., Wiley-VCH, Weinheim, 2013.
      (b) Gagnon, M.-C.; Auger, M.; Paquin, J.-F. Org. Biomol. Chem. 2018, 16, 4925.
      (c) Nosova, E. V.; Lipunova, G. N.; Charushin, V. N.; Chupakhin, O. N. J. Fluorine Chem. 2018, 212, 51.
      (d) Zhu, Y.; Han, J.; Wang, J.; Shibata, N.; Sodeoka, M.; Soloshonok, V. A.; Coelho, J. A. S.; Toste, F. D. Chem. Rev. 2018, 118, 3887.
      (e) Meanwell, N. A. J. Med. Chem. 2018, 61, 5822.
      (f) Wang, B.-C.; Wang, L.-J.; Jiang, B.; Wang, S.-Y.; Wu, N.; Li, X.-Q.; Shi, D.-Y. Mini-Rev. Med. Chem. 2017, 17, 683.

    2. [2]

    3. [3]

      (a) Han, J.-B.; Hao, J.-H.; Zhang, C.-P.; Qin, H.-L. Curr. Org. Chem. 2015, 19, 1554 and the references cited therein.
      (b) Li, L.; Huang, M.; Liu, C.; Xiao, J.-C.; Chen, Q.-Y.; Guo, Y.; Zhao, Z.-G. Org. Lett. 2015, 17, 4714.
      (c) Tang, X.-J.; Thomoson, C. S.; Dolbier, Jr. W. R. Org. Lett. 2014, 16, 4594.
      (d) Han, E.-J.; Sun, Y.; Shen, Q.; Chen, Q.-Y.; Guo, Y.; Huang, Y.-G. Org. Chem. Front. 2015, 2, 1379.
      (e) Luo, H.; Wu, G.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2015, 54, 14503.
      (f) Yu, X.; Cohen, S. M. J. Am. Chem. Soc. 2016, 138, 12320.
      (g) Mai, W.-P.; Sun, B.; Qian, G.-S.; Yuan, J.-W.; Mao, P.; Yang, L.-R.; Xiao, Y.-M. Tetrahedron 2015, 71, 8416.
      (h) Roh, G.-b.; Iqbal, N.; Cho, E. J. Chin. J. Chem. 2016, 34, 459.
      (i) Zhang, Y.; Du, H.; Zhu, M.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Tetrahedron Lett. 2017, 58, 880.
      (j) Zheng, J.; Chen, Q.-Y.; Sun, K.; Huang, Y.; Guo, Y. Tetrahedron Lett. 2016, 57, 5757.
      (k) Andrews, K. G.; Faizova, R.; Denton, R. M. Nat. Commun. 2017, 8, 15913.

    4. [4]

      (a) Umemoto, T.; Gotoh, Y. J. Fluorine Chem. 1985, 28, 235.
      (b) Umemoto, T.; Gotoh, Y. Bull. Chem. Soc. Jpn. 1987, 60, 3307.
      (c) Lyalin, V. V.; Orda, V. V.; Alekseeva, L. A.; Yagupol'skii, L. M. J. Org. Chem. USSR 1972, 8, 1027.

    5. [5]

      (a) Zhdankin, V. V.; Kuehl, C. K.; Simonsen, A. J. Tetrahedron Lett. 1995, 36, 2203.
      (b) Zhdankin, V. V.; Kuehl, C. K.; Simonsen, A. J. J. Org. Chem. 1996, 61, 8272.

    6. [6]

      Montanari, V.; Resnati, G. Tetrahedron Lett. 1994, 35, 8015.  doi: 10.1016/0040-4039(94)80037-5

    7. [7]

      DesMarteau, D. D.; Montanari, V. Chem. Commun. 1998, 2241.
       

    8. [8]

      Umemoto, T; Gotoh, Y. J. Fluorine Chem. 1986, 31, 231.  doi: 10.1016/S0022-1139(00)80536-9

    9. [9]

      Umemoto, T.; Gotoh, Y. Bull. Chem. Soc. Jpn. 1991, 64, 2008  doi: 10.1246/bcsj.64.2008

    10. [10]

      Tolnai, G. L.; Nilsson, U. J.; Olofsson, B. Angew. Chem., Int. Ed. 2016, 55, 11226.  doi: 10.1002/anie.201605999

    11. [11]

      Han, Q.-Y.; Zhao, C.-L.; Yang, J.; Zhang, C.-P. Green Chem. Lett. Rev. 2017, 10, 162.  doi: 10.1080/17518253.2017.1338759

    12. [12]

      Umemoto, T; Gotoh, Y. Bull. Chem. Soc. Jpn. 1987, 60, 3823.  doi: 10.1246/bcsj.60.3823

    13. [13]

      Zhao, C.-L.; Yang, J.; Han, Z.-Z.; Zhang, C.-P. J. Fluorine Chem. 2017, 204, 23.  doi: 10.1016/j.jfluchem.2017.09.009

    14. [14]

      Tolnai, G. L.; Székely, A.; Makó, Z.; Gáti, T.; Daru, J.; Bihari, T.; Stirling, A.; Novák, Z. Chem. Commun. 2105, 51, 4488.

    15. [15]

      DesMarteau, D. D.; Montanari, V. Chem. Lett. 2000, 29, 1052.  doi: 10.1246/cl.2000.1052

    16. [16]

      (a) DesMarteau, D. D.; Lu, C. Tetrahedron Lett. 2006, 47, 561.
      (b) DesMarteau, D. D.; Lu, C. J. Fluorine Chem. 2007, 128, 1326.

    17. [17]

      (a) Lu, C.; DesMarteau, D. D. J. Fluorine Chem. 2007, 128, 832. (b) Lu, C.; DesMarteau, D. D. Chem. Commun. 2008, 208.

    18. [18]

      (a) Zhang, J.; Martin, G. R.; DesMarteau, D. D. Chem. Commun. 2003, 2334.
      (b) Lu, C.; VanDerveer, D.; DesMarteau, D. D. Org. Lett. 2008, 10, 5565.

    19. [19]

      Chu, A-H. A.; Minciunescu, A.; Montanari, V.; Kumar, K.; Bennett, S. C. Org. Lett. 2014, 16, 1780.  doi: 10.1021/ol5004059

    20. [20]

      Chu, A-H. A.; Minciunescu, A.; Bennett, S. C. Org. Lett. 2015, 17, 6262.  doi: 10.1021/acs.orglett.5b03282

    21. [21]

      (a) Yan, S.-Y.; Zhang, Z.-Z.; Shi, B.-F. Chem. Commun. 2017, 53, 10287.
      (b) Zhang, H.; Wang, H.-Y.; Luo, Y.; Chen, C.; Cao, Y.; Chen, P.; Guo, Y.-L.; Lan, Y.; Liu, G. ACS Catal. 2018, 8, 2173.
      (c) Zhang, X.; Yang, C. Adv. Synth. Catal. 2015, 357, 2721.
      (d) Ohtsuka, Y.; Yamakawa, T. J. Fluorine Chem. 2016, 185, 96.
      (e) Zhu, M.; Han, X.; Fu, W.; Wang, Z.; Ji, B.; Hao, X.-Q.; Song, M.-P.; Xu, C. J. Org. Chem. 2016, 81, 7282.

    22. [22]

      Yang, J.; Han, Q.-Y.; Zhao, C.-L.; Dong, T.; Hou, Z.-Y.; Qin, H.-L.; Zhang, C.-P. Org. Biomol. Chem. 2016, 14, 7654.  doi: 10.1039/C6OB01384H

    23. [23]

      Tóth, B. L.; Kovács, S.; Sályi, G.; Novák, Z. Angew. Chem., Int. Ed. 2016, 55, 1988.  doi: 10.1002/anie.201510555

    24. [24]

      Kovács, S.; Tóth, B. L.; Borsik, G.; Borsik, G.; Bihari, T.; May, N. V.; Stirling, A.; Novák, Z. Adv. Synth. Catal. 2017, 359, 527.  doi: 10.1002/adsc.201601136

    25. [25]

      Borah, A. J.; Shi, Z. Chem. Commun. 2017, 53, 3945.  doi: 10.1039/C7CC01274H

    26. [26]

      Maraswami, M.; Pankajakshan, S.; Chen, G.; Loh, T. P. Org. Lett. 2017, 19, 4223.  doi: 10.1021/acs.orglett.7b01859

    27. [27]

      Wen, D.; Yuan, B.; He, R.; Shen, W.; Li, M. Tetrahedron Lett. 2018, 59, 462.  doi: 10.1016/j.tetlet.2017.12.075

  • 加载中
    1. [1]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    2. [2]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    3. [3]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    4. [4]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    5. [5]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    6. [6]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    7. [7]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    8. [8]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    9. [9]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    10. [10]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    11. [11]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    12. [12]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    13. [13]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    14. [14]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    15. [15]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    16. [16]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    17. [17]

      Fengshun WangHuachao JiZefei WuKang ChenWenqi GaoChen WangLonglu WangJianmei ChenDafeng Yan . The advanced development of one-dimensional transition metal dichalcogenide nanotubes: From preparation to application. Chinese Chemical Letters, 2025, 36(5): 109898-. doi: 10.1016/j.cclet.2024.109898

    18. [18]

      Jinjin YangChuanhui ZhuShuang ZhaoTao XiaPengfei TanYutian ZhangMei-Huan ZhaoYijie ZengMan-Rong Li . Spin-orbit-controlled metal-insulator transition in metastable SrIrO3 stabilized by physical and chemical pressures. Chinese Chemical Letters, 2025, 36(6): 109891-. doi: 10.1016/j.cclet.2024.109891

    19. [19]

      Shengyong LiuHui LiWei ZhangYan ZhangYan DongWei Tian . Multiple host-guest and metal coordination interactions induce supramolecular assembly and structural transition. Chinese Chemical Letters, 2025, 36(6): 110465-. doi: 10.1016/j.cclet.2024.110465

    20. [20]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

Metrics
  • PDF Downloads(13)
  • Abstract views(1267)
  • HTML views(193)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return