Citation: Wang Wanjun, Li Huan, Pan Renming, Zhu Weihua. Molecular Design and Property Prediction for a Series of 3, 3-Bis(difluoroamino)-1, 5-substituted-pentane Derivatized as Energetic Plasticizers[J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 170-176. doi: 10.6023/cjoc201808024 shu

Molecular Design and Property Prediction for a Series of 3, 3-Bis(difluoroamino)-1, 5-substituted-pentane Derivatized as Energetic Plasticizers

  • Corresponding author: Wang Wanjun, wangwj@sioc.ac.cn
  • Received Date: 20 August 2018
    Revised Date: 22 October 2018
    Available Online: 30 January 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 51603103)the National Natural Science Foundation of China 51603103

Figures(7)

  • 3, 3-Bis(difluoroamino)-1, 5-dinitratopentane was used as energetic plasticizer with improving energy properties and low glass transition temperature. To obtain more new difluoroamino energetic compounds with similar sturctures, a series of 3, 3-bis(difluoroamino)-1, 5-substituted-pentane derivatives were designed as candidates of novel energetic plasticizers. The heats of formation (HOFs), electronic structure, energy property and thermal stability were studied using density functional theory (DFT) method. The difluoroamino groups can increase energy gaps of electronic structure, density and detonation properties among the title compounds. Especially, 1, 3, 3, 5-tetra(difluoroamino)pentane (S3) has given outstanding values of potential energetic plasticizer. Its crystal density (1.91 g/cm3), detonation velocity (9.01 km/s), detonation pressure (37.31 GPa) and impact sensitivity (h50 29.83 cm) are very close to those of cyclotetramethylenetetranitramine (HMX). Furthermore, S3 can be synthesized via some mature processes in five steps.
  • 加载中
    1. [1]

      Chapman, R. D. In Organic Difluoramine Derivatives, Vol. 125, Ed.: Klap tke, T. M., Springer, Berlin, 2007.

    2. [2]

      Chapman, R. D.; Welker, M. F.; Kreutzberger, C. B. J. Org. Chem. 1998, 63, 1566.  doi: 10.1021/jo9718399

    3. [3]

      Chapman, R. D.; Gilardi, R. D.; Welker, M. F.; Kreutzberger, C. B. J. Org. Chem. 1999, 64, 960.  doi: 10.1021/jo9819640

    4. [4]

      Chapman, R. D.; Groshens, T. J. US 7632943, 2009[Chem. Abstr. 2009, 152, 57346].

    5. [5]

      Zhang, J.; Oxley, J.; Smith, J.; Bedford, C.; Chapman, R. J. Mass Spectrom. 2000, 35, 841.  doi: 10.1002/(ISSN)1096-9888

    6. [6]

      Chapman, R. D.; Nguyen, B. V. US 6310204, 2001[Chem. Abstr. 2001, 135, 346536].

    7. [7]

      Axenrod, T.; Guan, X. P.; Sun, J.; Qi, L.; Chapman, R. D.; Gliardi, R. D. Tetrahedron Lett. 2001, 42, 2621.  doi: 10.1016/S0040-4039(01)00260-X

    8. [8]

      Archibald, T. G.; Manser, G. E.; Immoos, J. E. US 5272249, 1993[Chem. Abstr. 1994, 120, 135476].

    9. [9]

      Archibald, T. G.; Manser, G. E.; Immoos, J. E. US 5420311, 1995[Chem. Abstr. 1994, 120, 135476].

    10. [10]

      Archibald, T. G.; Manser, G. E. US 5789617, 1998[Chem. Abstr. 1994, 120, 298071].

    11. [11]

      Adolph, H. G.; Trivedi, N. J. US 6325876, 2001[Chem. Abstr. 2001, 136, 8637].

    12. [12]

      Li, H.; Pan, R. M.; Wang, W. J.; Zhang, L. Y. Propellants, Explos., Pyrotech. 2014, 39, 819.  doi: 10.1002/prep.201400036

    13. [13]

      Li, H.; Pan, R. M.; Wang, W. J.; Zhang, L. Y. J. Therm. Anal. Calorim. 2014, 118, 189.  doi: 10.1007/s10973-014-3985-y

    14. [14]

      Li, H.; Pan, J. A.; Wang, W. J.; Pan, R. M.; Zhu, W. H. J. Macromol. Sci., Part A:Pure Appl. Chem. 2018, 55, 135.  doi: 10.1080/10601325.2017.1387742

    15. [15]

      Wu, Q.; Zhu, W. H.; Xiao, H. M. J. Mol. Model. 2013, 19, 2945.  doi: 10.1007/s00894-013-1825-9

    16. [16]

      Pan, Y.; Li, J. S.; Cheng, B. B.; Zhu, W. H.; Xiao, H. M. Comput. Theor. Chem. 2012, 992, 110.  doi: 10.1016/j.comptc.2012.05.013

    17. [17]

      Wu, Q.; Pan, Y.; Zhu, W. H.; Xiao, H. M. J. Mol. Model. 2013, 19, 1853.  doi: 10.1007/s00894-013-1756-5

    18. [18]

      Jensen, T. L.; Moxnes, J. F.; Kj nstad, E. F.; Unneberg, E. Cent. Eur. J. Energ. Mater. 2016, 13, 445.  doi: 10.22211/cejem/64995

    19. [19]

      Xiang, D.; Chen, H.; Zhu, W. H.; Xiao, H. M. Can. J. Chem. 2016, 94, 667.  doi: 10.1139/cjc-2016-0174

    20. [20]

      Muthurajan, H.; Sivabalan, R.; Talawar, M. B.; Anniyappan, M.; Venugopalan, S. J. Hazard. Mater. 2006, 133, 30.  doi: 10.1016/j.jhazmat.2005.10.009

    21. [21]

      Chen, Z. X.; Xiao J. M.; Xiao, H. M.; Chiu, Y. N. J. Phys. Chem. A 1999, 103, 8062.  doi: 10.1021/jp9903209

    22. [22]

      Ju, X. H.; Li, Y. M.; Xiao, H. M. J. Phys. Chem. A 2005, 109, 934.  doi: 10.1021/jp045071p

    23. [23]

      Ju, X. H.; Wang, X.; Bei, F. L. J. Comput. Chem. 2005, 26, 1263.  doi: 10.1002/(ISSN)1096-987X

    24. [24]

      Atkins, P. W. Physical Chemistry, Oxford University Press, Oxford, 1982.

    25. [25]

      Politzer, P.; Murry, J. S.; Grice, M. E.; Salvo, M. De; Miller, E. Mol. Phys. 1997, 91, 923.  doi: 10.1080/002689797171030

    26. [26]

      Politzer, P.; Murry, J. S. Cent. Eur. J. Energ. Mater. 2011, 8, 209.

    27. [27]

      Byrd, E. F. C.; Rice, B. M. J. Phys. Chem. A 2006, 110, 1005.  doi: 10.1021/jp0536192

    28. [28]

      Kamlet, M. J.; Jacobs, S. T. J. Chem. Phys. 1968, 48, 23.  doi: 10.1063/1.1667908

    29. [29]

      Sun, Y. B.; Hui, J. M.; Cao, X. M. Military Use of Blended Explosive, Weapon Industry Press, Beijing, 1995 (in Chinese).

    30. [30]

      Politzer, P.; Martines, J.; Murry, J. S.; Concha, M. C.; Toro-Labbé, A. Mol. Phys. 2009, 107, 2095.  doi: 10.1080/00268970903156306

    31. [31]

      Pospíšil, M.; Vávra, P.; Concha, M. C.; Murry, J. S.; Politzer, P. J. Mol. Model. 2010, 16, 895.  doi: 10.1007/s00894-009-0587-x

    32. [32]

      Benson, S. W. Thermochemical Kinetic, 2nd ed., Weily Interscience, New York, 1976.

    33. [33]

      Mills, I.; Cvitas, T.; Homann, K.; Kallay, N.; Kuchitsu, K. Quantities, Units, and Symbols in Physical Chemistry, Blackwell Scientific Publications, Oxford, 1988.

    34. [34]

      Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255.  doi: 10.1021/ar020230d

    35. [35]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010.

    36. [36]

      Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B:Condens. Matter Mater. Phys. 1988, 37, 785.  doi: 10.1103/PhysRevB.37.785

    37. [37]

      Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265.  doi: 10.1063/1.447079

    38. [38]

      Lu, T., and Chen, F. J. Comput. Chem. 2012, 33, 580.  doi: 10.1002/jcc.v33.5

    39. [39]

      Dean, J. A. LANGE's Handbook of Chemistry, 13th ed., Mc Graw-Hill Book Co., New York, 1985.

    40. [40]

      Dean, J. A. LANGE's Handbook of Chemistry, 15th ed., Mc Graw-Hill Book Co., New York, 1999.

    41. [41]

      Joo, Y. H.; Shreeve, J. M. Angew. Chem., Int. Ed. 2009, 48, 564.  doi: 10.1002/anie.v48:3

    42. [42]

      Ghule, V. D.; Sarangapani, R.; Jadhav, P. M.; Pandey, R. K. J. Mol. Model. 2011, 17, 2927.  doi: 10.1007/s00894-011-0959-x

    43. [43]

      Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502.  doi: 10.1021/jp960976r

    44. [44]

      Shen, C.; Wang, P. C.; Lu, M. J. Phys. Chem. A 2015, 119, 8250.  doi: 10.1021/acs.jpca.5b04969

    45. [45]

      Chung, G.; Schmidt, M. W.; Gordon, M. S. J. Phys. Chem. A 2000, 104, 5647.  doi: 10.1021/jp0004361

    46. [46]

      Owen, G. R.; Reese, C. B. J. Chem. Soc. C 1970, 17, 2401.

    47. [47]

      Kenji, H.; Tadashi, M.; Shaoji, S. JP 2007-070270, 2007[Chem. Abstr. 2007, 146, 358683].

    48. [48]

      Haiges, R.; Wager, R.; Boatz, J. A.; Yousufuddin, M.; Etzkorn, M.; Prakash, G. K.; Christe, K. O.; Chapman, R. D.; Welker, M. F.; Kreutzberger. C. B. Angew. Chem., Int. Ed. 2006, 45, 5179.  doi: 10.1002/(ISSN)1521-3773

  • 加载中
    1. [1]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Haifeng ZHENGXingzhe GUOYunwei WEIXinfang WANGHuimin QIYuting YANJie ZHANGBingwen LI . Post-synthetic modification strategy to construct Co-MOF composites for boosting oxygen evolution reaction activity. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 193-202. doi: 10.11862/CJIC.20250029

    4. [4]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    5. [5]

      Dixing NiJiarui QiZhi DengDong DingRui WangWenjie ZhouSisi ZhouYang SunShuai LiZhaoxiang Wang . Voltage design and transport channel optimization of anti-perovskite cathode materials: A density functional theory study. Chinese Chemical Letters, 2025, 36(12): 110683-. doi: 10.1016/j.cclet.2024.110683

    6. [6]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    10. [10]

      Yupeng TANGHaiying YANGFan JINNan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460

    11. [11]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    12. [12]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    13. [13]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    14. [14]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    15. [15]

      Shan-Shan LiJuan LuoShu-Nuo LiangDan-Na ChenLi-Ning ChenCheng-Xue PanPeng-Ju Xia . Efficient and regioselective C=S bond difunctionalization through a three-component radical relay strategy. Chinese Chemical Letters, 2025, 36(6): 110424-. doi: 10.1016/j.cclet.2024.110424

    16. [16]

      Cong-Bin JiDing-Xiong XieMei ChenYe-Ying LanBao-Hua ZhangJi-Ying YangZheng-Hui KangShu-Jie ChenYu-Wei ZhangYun-Lin Liu . Green synthesis of 2-trifluoromethylquinoline skeletons via organocatalytic N-[(α-trifluoromethyl)vinyl]isatins CN bond activation. Chinese Chemical Letters, 2025, 36(7): 110598-. doi: 10.1016/j.cclet.2024.110598

    17. [17]

      Tian-Zhang WangLe-Yu TangYu-Qiu GuanLingfei HuGang LuYu-Feng Liang . Nickel-catalyzed reductive alkynylation of ketoimines via unstrained C–C bond activation. Chinese Chemical Letters, 2025, 36(11): 111050-. doi: 10.1016/j.cclet.2025.111050

    18. [18]

      Ziqi Chen Miriding Mutailipu . Achieving the birefringence-bandgap trade-off: hydrogen-bond engineered biuret-cyanurate. Chinese Journal of Structural Chemistry, 2025, 44(10): 100695-100695. doi: 10.1016/j.cjsc.2025.100695

    19. [19]

      Hong-Li LongHong-Jie Peng . Lithium-bond chemistry enlightens 600 Wh/kg solid-state batteries. Chinese Chemical Letters, 2026, 37(2): 112045-. doi: 10.1016/j.cclet.2025.112045

    20. [20]

      Xiangjun ZhangXiaodi YangYan WangZhongping XuSisi YiTao GuoYue LiaoXiyu TangJianxiang ZhangRuibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854

Metrics
  • PDF Downloads(5)
  • Abstract views(1441)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return