Citation: Yang Fanzhi, Zhang Han, Liu Xuri, Wang Bo, Ackermann Lutz. Transition Metal-Catalyzed Regio-selective Aromatic C—H Bond Oxidation for C—O Bond Formation[J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 59-73. doi: 10.6023/cjoc201808017 shu

Transition Metal-Catalyzed Regio-selective Aromatic C—H Bond Oxidation for C—O Bond Formation

  • Corresponding author: Yang Fanzhi, yangfanzhi@bit.edu.cn Wang Bo, bowang@bit.edu.cn Ackermann Lutz, Lutz.Ackermann@chemie.uni-goettingen.de
  • Received Date: 16 August 2018
    Revised Date: 22 October 2018
    Available Online: 26 January 2018

    Fund Project: the National Natural Science Foundation of China 21801018the Beijing Institute of Technology Research Fund Program for Young Scholars 1230011181807Project supported by the National Natural Science Foundation of China (No. 21801018) and the Beijing Institute of Technology Research Fund Program for Young Scholars (No. 1230011181807)

Figures(31)

  • Recent years the great progress in transition metal-catalyzed direct aromatic C—H oxidation has been witnessed, which has been utilized in the preparation of various phenolic compounds. These transformations employ inter alia palladium, copper, ruthenium, iridium, etc. as the transition metal catalysts, and hypervalent iodine, persulfate, or oxygen as the oxidants. There have been several reviews in which the C—H oxidations with specific transition metal or oxidant was discussed. This review focuses specifically on transition metal-catalyzed aromatic C—H oxidations with ortho-, meta-, or para-selectivity, and rationalizes the possible generation mechanism of regio-selectivities, which might be controlled by the directing group via chelation-assistance, the ligand, or intrinsic properties of the substrate. The discussion section indicated the existing problems of transition metal-catalyzed aromatic C—H oxidations, as well as the possible limiting factors for the development and application of this strategy.
  • 加载中
    1. [1]

      (a) Rappoport, Z. The Chemistry of Phenols, Wiley-VCH, Weinheim, 2003.
      (b) Fiegel, H.; Voges, H. W.; Hamamoto, T.; Umemura, S.; Iwata, T.; Miki, H.; Fujita, Y.; Buysch, H. J.; Garbe, D.; Paulus, W. Phenol Derivatives in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, New York, 2002.
      (c) Hartwig, J. F. In Handbook of Organopalladium Chemistry for Organic Synthesis, Vol. 1, Ed.: Negishi, E.-I., Wiley-Interscience, New York, 2002, p. 1097.
      (d) Tyman, J. H. P. Synthetic and Natural Phenols, Elsevier, New York, 1996.
      (e) Liao, S.; Zhang, G.; Cao, H.; Chen, B.; Li, W.; Wu, X.; Feng, Y. Chin. J. Org. Chem. 2018, 38, 1549.
      (f) Lin, W.; Cai, Q.; Zheng, C.; Huang, Z.; Shi, D. Chin. J. Org. Chem. 2017, 37, 2094.
      (g) Li, Z.; Kang, S.; Chen, L.; Wang, Y.; Li, J. Chin. J. Org. Chem. 2016, 36, 1143.

    2. [2]

      Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.  doi: 10.1021/cr900184e

    3. [3]

      Enthaler, S.; Company, A. Chem. Soc. Rev. 2011, 40, 4912.  doi: 10.1039/c1cs15085e

    4. [4]

      Thirunavukkarasu, V. S.; Kozhushkov, S. I.; Ackermann, L. Chem. Commun. 2014, 50, 29.  doi: 10.1039/C3CC47028H

    5. [5]

      Newhouse, T.; Baran, P. S. Angew. Chem. Int. Ed. 2011, 50, 3362.  doi: 10.1002/anie.201006368

    6. [6]

      Liang, Y.-F.; Jiao, N. Acc. Chem. Res. 2017, 50, 1640.  doi: 10.1021/acs.accounts.7b00108

    7. [7]

      Mandal, S.; Bera, T.; Dubey, G.; Saha, J.; Laha, J. K. ACS Catal. 2018, 8, 5085.  doi: 10.1021/acscatal.8b00743

    8. [8]

      (a) Huang, Z.; Dong, G. Acc. Chem. Res. 2017, 50, 465.
      (b) Hartwig, J. F. Acc. Chem. Res. 2017, 50, 549.
      (c) Kozlowski, M. C. Acc. Chem. Res. 2017, 50, 638.

    9. [9]

      For selected recent examples, see:
      (a) Raghuvanshi, K.; Zell, D.; Ackermann, L. Org. Lett. 2017, 19, 1278.
      (b) Raghuvanshi, K.; Rauch, K.; Ackermann, L. Chem.-Eur. J. 2015, 21, 1790.
      (c) Hao, X.-Q.; Chen, L.-J.; Ren, B.; Li, L.-Y.; Yang, X.-Y.; Gong, J.-F.; Niu, J.-L.; Song M.-P. Org. Lett. 2014, 16, 1104.
      (d) Shi, S.; Kuang, C. J. Org. Chem. 2014, 79, 6105.
      (e) Zhang, C.; Sun, P. J. Org. Chem. 2014, 79, 8457.
      (f) Péron, F.; Fossey, C.; Sopkova-de Oliveira Santos, J.; Cailly, T.; Fabis, F. Chem.-Eur. J. 2014, 20, 7507.
      (g) Bhadra, S.; Dzik, W. I.; Gooßen, L. J. Angew. Chem., Int. Ed. 2013, 52, 2959.
      (h) Bhadra, S.; Matheis, C.; Katayev, D.; Gooßen, L. J. Angew. Chem., Int. Ed. 2013, 52, 9279.
      (i) Suess, A. M.; Ertem, M. Z.; Cramer, C. J.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 9797.
      (j) Roane, J.; Daugulis, O. Org. Lett. 2013, 15, 5842.
      (k) Eom, D.; Jeong, Y.; Kim, Y. R.; Lee, E.; Choi, W.; Lee, P. H. Org. Lett. 2013, 15, 5210.
      (l) Zhao, J.; Wang, Y.; He, Y.; Liu, L.; Zhu, Q. Org. Lett. 2012, 14, 1078.
      (m) Zhao, J.; Zhang, Q.; Liu, L.; He, Y.; Li, J.; Li, J.; Zhu, Q. Org. Lett. 2012, 14, 5362.
      (n) Li, W.; Sun, P. J. Org. Chem. 2012, 77, 8362.
      (o) Jiang, T.-S.; Wang, G.-W. J. Org. Chem. 2012, 77, 9504.
      (p) Xiao, B.; Gong, T.-J.; Liu, Z.-J.; Liu, J.-H.; Luo, D.-F.; Xu, J.; Liu L. J. Am. Chem. Soc. 2011, 133, 9250.
      (q) Anand, M.; Sunoj, R. B. Org. Lett. 2011, 13, 4802.
      (r) Wei, Y.; Yoshikai, N. Org. Lett. 2011, 13, 5504.
      (s) Wang, X.; Lu, Y.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 12203.
      (t) Wang, G.-W.; Yuan, T.-T. J. Org. Chem. 2010, 75, 476.

    10. [10]

      For selected reviews and recent examples, see:
      (a) Tang, S.; Liu, Y.; Lei, A. Chem 2018, 4, 27.
      (b) Tang, S.; Zeng, L.; Lei, A. J. Am. Chem. Soc. 2018, 140, 13128.
      (c) Ma, C.; Fang, P.; Mei, T.-S. ACS Catal. 2018, 8, 7179.
      (d) Sauermann, N.; Meyer, T. H.; Qiu, Y.; Ackermann, L. ACS Catal. 2018, 8, 7086.
      (e) Sauermann, N.; Meyer, T. H.; Ackermann, L. Chem.-Eur. J. 2018, 24, 16209.
      (f) Jiao, K.-J.; Li, Z.-M.; Xu, X.-T.; Zhang, L.-P.; Li, Y.-Q.; Zhang, K.; Mei, T.-S. Org. Chem. Front. 2018, 5, 2244.
      (g) Shao, A.; Li, N.; Gao, Y.; Zhan, J.; Chiang, C.-W.; Lei, A. Chin. J. Chem. 2018, 36, 619.
      (h) Yang, Q.-L.; Fang, P.; Mei, T.-S. Chin. J. Chem. 2018, 36, 338.
      (i) Jiao, K.-J.; Zhao, C.-Q.; Fang, P.; Mei, T.-S. Tetrahedron Lett. 2017, 58, 797.
      (j) Yuan, Y.; Chen, Y.; Tang, S.; Huang, Z.; Lei, A. Sci. Adv. 2018, 4, eaat5312.
      (k) Shrestha, A.; Lee, M.; Dunn, A. L.; Sanford, M. S. Org. Lett. 2018, 20, 204.
      (l) Sauermann, N.; Meyer, T. H.; Tian, C.; Ackermann, L. J. Am. Chem. Soc. 2017, 139, 18452.
      (m) Yang, Q.-L.; Li, Y.-Q.; Ma, C.; Fang, P.; Zhang, X.-J.; Mei, T.-S. J. Am. Chem. Soc. 2017, 139, 3293.
      (n) Li, Y.-Q.; Yang, Q.-L.; Fang, P.; Mei, T.-S.; Zhang, D. Org. Lett. 2017, 19, 2905.

    11. [11]

      A recent example: Zhang, Z.-J.; Quan, X.-J.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. Org. Lett. 2014, 16, 3292.

    12. [12]

      (a) Jintoku, T.; Taniguchi, H.; Fujiwara, Y. Chem. Lett. 1987, 1865.
      (b) Jintoku, T.; Takaki, K.; Fujiwara, Y.; Fuchita Y.; Hiraki, K. Bull. Chem. Soc. Jpn. 1990, 63, 438.
      (c) Jintoku, T.; Nishimura, K.; Takaki, K.; Fujiwara, Y. Chem. Lett. 1990, 1687.

    13. [13]

      Yamada, S.; Sakaguchi, S.; Ishii, Y. J. Mol. Catal. A Chem. 2007, 262, 48.  doi: 10.1016/j.molcata.2006.08.045

    14. [14]

      Yoneyama, T.; Crabtree, R. H. J. Mol. Catal. A: Chem. 1996, 108, 35.  doi: 10.1016/1381-1169(95)00289-8

    15. [15]

      Cook, A. K.; Sanford, M. S. J. Am. Chem. Soc. 2015, 137, 3109.  doi: 10.1021/jacs.5b00238

    16. [16]

      Gary, J. B.; Cook, A. K.; Sanford, M. S. ACS Catal. 2013, 3, 700.  doi: 10.1021/cs300786j

    17. [17]

      Shibahara, F.; Kinoshita, S.; Nozaki, K. Org. Lett. 2004, 6, 2437.  doi: 10.1021/ol049166l

    18. [18]

      Chen, C.-D.; Sheng, W.-B.; Shi, G.-J.; Guo, C.-C. J. Phys. Org. Chem. 2013, 26, 23.  doi: 10.1002/poc.v26.1

    19. [19]

      Casella, L.; Rigoni, L. J. Chem. Soc., Chem. Commun. 1985, 1668.
       

    20. [20]

      Réglier, M.; Amadeï, E.; Tadayoni, R.; Waegell, B. J. Chem. Soc., Chem. Commun. 1989, 447.
       

    21. [21]

      Cruse, R. W.; Kaderli, S.; Meyer, C. J.; Zuberbühler, A. D.; Karlin, K. D. J. Am. Chem. Soc. 1988, 110, 5020.  doi: 10.1021/ja00223a020

    22. [22]

      Reinaud, O.; Capdevielle, P.; Maumy, M. J. Chem. Soc., Chem. Commun. 1990, 566.
       

    23. [23]

      Takizawa, Y.; Tateishi, A.; Sugiyama, J.; Yoshida, H.; Yoshihara, N. J. Chem. Soc., Chem. Commun. 1991, 104.
       

    24. [24]

      Singh, B. K.; Jana, R. J. Org. Chem. 2016, 81, 831.  doi: 10.1021/acs.joc.5b02302

    25. [25]

      Chen, X.; Hao, X.-S.; Goodhue, C.-E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790.  doi: 10.1021/ja061715q

    26. [26]

      (a) Valk, J.-M.; van Belzen, R.; Boersma, J.; Spek, A. L.; van Koten, G. J. Chem. Soc., Dalton Trans. 1994, 2293.
      (b) Valk, J.-M.; Boersma, J.; van Koten, G. Organometallics 1996, 15, 4366.

    27. [27]

      Zhang, Y.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 14654.  doi: 10.1021/ja907198n

    28. [28]

      Shan, G.; Yang, X.; Ma, L.; Rao, Y. Angew. Chem., Int. Ed. 2012, 51, 13070.  doi: 10.1002/anie.201207458

    29. [29]

      Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300.  doi: 10.1021/ja031543m

    30. [30]

      Subba Reddy, B. V.; Umadevi, N.; Narasimhulu, G.; Yadav, J. S. Tetrahedron Lett. 2012, 53, 6091.  doi: 10.1016/j.tetlet.2012.08.124

    31. [31]

      Zhao, Q.; Poisson, T.; Pannecoucke, X.; Besset, T. Synthesis 2017, 49, 4808.  doi: 10.1055/s-0036-1590878

    32. [32]

      Gandeepan, P.; Ackermann, L. Chem 2018, 4, 199.  doi: 10.1016/j.chempr.2017.11.002

    33. [33]

      Chen, X.-Y.; Ozturk, S.; Sorensen, E. J. Org. Lett. 2017, 19, 6280.  doi: 10.1021/acs.orglett.7b02906

    34. [34]

      Desai, L. V.; Malik, H. A.; Sanford, M. S. Org. Lett. 2006, 8, 1141.  doi: 10.1021/ol0530272

    35. [35]

      Liang, Y.-F.; Wang, X.; Yuan, Y.; Liang, Y.; Li, X.; Jiao, N. ACS Catal. 2015, 5, 6148.  doi: 10.1021/acscatal.5b01700

    36. [36]

      Nguyen, T. H. L.; Gigant, N.; Delarue-Cochin, S.; Joseph, D. J. Org. Chem. 2016, 81, 1850.  doi: 10.1021/acs.joc.5b02614

    37. [37]

      Qian, C.; Lin, D.; Deng, Y.; Zhang, X.-Q.; Jiang, H.; Miao, G.; Tang, X.; Zeng, W. Org. Biomol. Chem. 2014, 12, 5866.  doi: 10.1039/C4OB00993B

    38. [38]

      Zhang, D.; Cui, X.; Yang, F.; Zhang, Q.; Zhu, Y.; Wu, Y. Org. Chem. Front. 2015, 2, 951.  doi: 10.1039/C5QO00120J

    39. [39]

      Kalyani, D.; Sanford, M. S. Org. Lett. 2005, 7, 4149.  doi: 10.1021/ol051486x

    40. [40]

      Irastorza, A.; Aizpurua, J. M.; Correa, A. Org. Lett. 2016, 18, 1080.  doi: 10.1021/acs.orglett.6b00195

    41. [41]

      Kim, S. H.; Lee, H. S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2008, 49, 5863.  doi: 10.1016/j.tetlet.2008.07.141

    42. [42]

      Dong, J.; Liu, P.; Sun, P. J. Org. Chem. 2015, 80, 2925.  doi: 10.1021/acs.joc.5b00167

    43. [43]

      Yamaguchi, T.; Yamaguchi, E.; Tada, N.; Itoh, A. Adv. Synth. Catal. 2015, 357, 2017.  doi: 10.1002/adsc.v357.9

    44. [44]

      Dick, A. R.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 12790.  doi: 10.1021/ja0541940

    45. [45]

      Stowers, K. J.; Sanford, M. S. Org. Lett. 2009, 11, 4584.  doi: 10.1021/ol901820w

    46. [46]

      Powers, D. C.; Geibel, M. A. L.; Klein, J. E. M. N.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 17050.  doi: 10.1021/ja906935c

    47. [47]

      Powers, D. C.; Xiao, D. Y.; Geibel, M. A. L.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 14530.  doi: 10.1021/ja1054274

    48. [48]

      Yan, Y.; Feng, P.; Zheng, Q.-Z.; Liang, Y.-F.; Lu, J.-F.; Cui, Y.; Jiao, N. Angew. Chem., Int. Ed. 2013, 52, 5827.  doi: 10.1002/anie.201300957

    49. [49]

      Desai, L. V; Stowers, K. J.; Sanford, M. S. J. Am. Chem. Soc. 2008, 130, 13285.  doi: 10.1021/ja8045519

    50. [50]

      Wang, G.-W.; Yuan, T.-T.; Wu, X.-L. J. Org. Chem. 2008, 73, 4717.  doi: 10.1021/jo8003088

    51. [51]

      Sun, Y.-H.; Sun, T.-Y.; Wu, Y.-D.; Zhang, X.; Rao, Y. Chem. Sci. 2016, 7, 2229.  doi: 10.1039/C5SC03905C

    52. [52]

      Yang, X.; Sun, Y.; Chen, Z.; Rao, Y. Adv. Synth. Catal. 2014, 356, 1625.  doi: 10.1002/adsc.v356.7

    53. [53]

      A review: Parasram, M.; Gevorgyan, V. Acc. Chem. Res. 2017, 50, 2038.

    54. [54]

      (a) Chernyak, N.; Dudnik, A. S.; Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2010, 132, 8270.
      (b) Huang, C.; Chernyak, N.; Dudnik, A. S.; Gevorgyan, V. Adv. Synth. Catal. 2011, 353, 1285.
      (c) Gulevich, A. V.; Melkonyan, F. S.; Sarkar, D.; Gevorgyan, V. J. Am. Chem. Soc. 2012, 134, 5528.

    55. [55]

      (a) Huang, C.; Ghavtadze, N.; Chattopadhyay, B.; Gevorgyan, V. J. Am. Chem. Soc. 2011, 133, 17630.
      (b) Huang, C.; Ghavtadze, N.; Godoi, B.; Gevorgyan, V. Chem.-Eur. J. 2012, 18, 9789.

    56. [56]

      Yang, Y.; Lin, Y.; Rao, Y. Org. Lett. 2012, 14, 2874.  doi: 10.1021/ol301104n

    57. [57]

      Ackermann, L.; Vicente, R.; Potukuchi, H. K.; Pirovano, V. Org. Lett. 2010, 12, 5032.  doi: 10.1021/ol102187e

    58. [58]

      Thirunavukkarasu, V. S.; Hubrich, J.; Ackermann, L. Org. Lett. 2012, 14, 4210.  doi: 10.1021/ol3018819

    59. [59]

      Yang, F.; Ackermann, L. Org. Lett. 2013, 15, 718.  doi: 10.1021/ol303520h

    60. [60]

      Thirunavukkarasu, V. S.; Ackermann, L. Org. Lett. 2012, 14, 6206.  doi: 10.1021/ol302956s

    61. [61]

      Shan, G.; Han, X.; Lin, Y.; Yu, S.; Rao, Y. Org. Biomol. Chem. 2013, 11, 2318.  doi: 10.1039/c3ob27457h

    62. [62]

      Kim, K.; Choe, H.; Jeong, Y.; Lee, J. H.; Hong, S. Org. Lett. 2015, 17, 2550.  doi: 10.1021/acs.orglett.5b01138

    63. [63]

      Yang, F.; Rauch, K.; Kettelhoit, K.; Ackermann, L. Angew. Chem., Int. Ed. 2014, 53, 11285.  doi: 10.1002/anie.201405647

    64. [64]

      Shome, S.; Singh, S. P. Tetrahedron Lett. 2017, 58, 3743.  doi: 10.1016/j.tetlet.2017.08.037

    65. [65]

      Ackermann, L.; Wang, L.; Wolfram, R.; Lygin, A. V. Org. Lett. 2012, 14, 728.  doi: 10.1021/ol203251s

    66. [66]

      Yang, X.; Shan, G.; Rao, Y. Org. Lett. 2013, 15, 2334.  doi: 10.1021/ol400437a

    67. [67]

      Liu, W.; Ackermann, L. Org. Lett. 2013, 15, 3484.  doi: 10.1021/ol401535k

    68. [68]

      Turlington, C. R.; Morris, J.; White, P. S.; Brennessel, W. W.; Jones, W. D.; Brookhart, M.; Templeton, J. L. Organometallics 2014, 33, 4442.  doi: 10.1021/om500660n

    69. [69]

      Wu, Q.; Yan, D.; Chen, Y.; Wang, T.; Xiong, F.; Wei, W.; Lu, Y.; Sun, W.-Y.; Li, J. J.; Zhao, J. Nat. Commun. 2017, 8, 14227.  doi: 10.1038/ncomms14227

    70. [70]

      Cook, A. K.; Emmert, M. H.; Sanford, M. S. Org. Lett. 2013, 15, 5428.  doi: 10.1021/ol4024248

    71. [71]

      For selected recent views on template-directed meta-selective C(sp2)—H functionalizations, see:
      (a) Mihai, M. T.; Genov, G. R.; Phipps, R. J. Chem. Soc. Rev. 2017, 47, 149.
      (b) Ping, L.; Chung, D. S.; Bouffard, J.; Lee, S.-G. Chem. Soc. Rev. 2017, 46, 4299.
      (c) Mihai, M. T.; Phipps, R. J. Synlett 2017, 28, 1011.
      (d) Dey, A.; Agasti, S.; Maiti, D. Org. Biomol. Chem. 2016, 14, 5440.
      (e) Yang, G.; Butt, N.; Zhang, W. Chin. J. Catal. 2016, 37, 98.
      (f) Yang, G.; Butt, N.; Zhang, W. Chin. J. Catal. 2016, 37, 98.
      (g) Ackermann, L.; Li, J. Nat. Chem. 2015, 7, 686.
      (h) Yang, J. Org. Biomol. Chem. 2015, 13, 1930.

    72. [72]

      (a) Bera, M.; Sahoo, S. K.; Maiti, D. ACS Catal. 2016, 6, 3575.
      (b) Maji, A.; Bhaskararao, B.; Singha, S.; Sunoj, R. B.; Maiti, D. Chem. Sci. 2016, 7, 3147.

    73. [73]

      Bag, S.; Patra, T.; Modak, A.; Deb, A.; Maity, S.; Dutta, U.; Dey, A.; Kancherla, R.; Maji, A.; Hazra, A.; Bera, M.; Maiti, D. J. Am. Chem. Soc. 2015, 137, 11888.  doi: 10.1021/jacs.5b06793

    74. [74]

      A review on template-directed para-selective C(sp2)–H functionalizations: Dey, A.; Maity, S.; Maiti, D. Chem. Commun. 2016, 52, 12398.

  • 加载中
    1. [1]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    2. [2]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    3. [3]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    4. [4]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    5. [5]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    6. [6]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    7. [7]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    8. [8]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    9. [9]

      Jingyu ChenSha WuYuhao WangJiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102

    10. [10]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    11. [11]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    12. [12]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    13. [13]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    14. [14]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    15. [15]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    16. [16]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    17. [17]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    18. [18]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    19. [19]

      Fengshun WangHuachao JiZefei WuKang ChenWenqi GaoChen WangLonglu WangJianmei ChenDafeng Yan . The advanced development of one-dimensional transition metal dichalcogenide nanotubes: From preparation to application. Chinese Chemical Letters, 2025, 36(5): 109898-. doi: 10.1016/j.cclet.2024.109898

    20. [20]

      Jinjin YangChuanhui ZhuShuang ZhaoTao XiaPengfei TanYutian ZhangMei-Huan ZhaoYijie ZengMan-Rong Li . Spin-orbit-controlled metal-insulator transition in metastable SrIrO3 stabilized by physical and chemical pressures. Chinese Chemical Letters, 2025, 36(6): 109891-. doi: 10.1016/j.cclet.2024.109891

Metrics
  • PDF Downloads(28)
  • Abstract views(1487)
  • HTML views(298)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return