Citation: Liu Lantao, Chen Yingyinga, Zhang An'an, Liu Xue, Zhang Li, Bai Jingru, Li Heng, Mao Guoliang. Palladium Catalyzed Allylic Amination of Cinnamyl Carbonates with Acyl Hydrazones[J]. Chinese Journal of Organic Chemistry, ;2019, 39(2): 475-481. doi: 10.6023/cjoc201808013 shu

Palladium Catalyzed Allylic Amination of Cinnamyl Carbonates with Acyl Hydrazones

  • Corresponding author: Liu Lantao, liult05@iccas.ac.cn Mao Guoliang, maoguoliang@nepu.edu.cn
  • Received Date: 13 August 2018
    Revised Date: 3 September 2018
    Available Online: 10 February 2018

    Fund Project: the National Natural Science Foundation of China 21572126the Program for Science & Technology Innovation Talents in Universities of Henan Province 14HASTIT016the Program of Science and Technology Innovation Talents of Henan Province 2018JQ0011Project supported by the National Natural Science Foundation of China (No. 21572126), the Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 14HASTIT016) and the Program of Science and Technology Innovation Talents of Henan Province (No. 2018JQ0011)

Figures(2)

  • Allylic amines moiety exists extensively in natural products, medicines and functional materials. In addition, they are also a kind of versatile building blocks for organic synthesis. Using CH3CN as solvent, the palladium catalyzed allyl amination of cinnamyl carbonate and acylhydrazone compounds was realized under argon. The linear product was formed selectively and the up to 99% yield was obtained. The reaction has features of base free, mild reaction condition, simple operation and broad substrate scope.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      (a) Monk, J. P.; Brogden, R. N. Drugs 1991, 42, 659.
      (b) Birnbaum, J. E. J. Am. Acad. Dermatol. 1990, 23, 782.
      (c) Xu, Z.; Wang, D. S.; Yu, X.; Yang Y.; Wang, D. Adv. Synth. Catal. 2017, 359, 3332.

    4. [4]

      (a) Stuetz, A.; Petranyi, G. J. Med. Chem. 1984, 27, 1539.
      (b) Rudisill, D. E.; Castonguay, L. A.; Me, J. K. Tetrahedron Lett. 1988, 29, 1509.
      (c) Balfour, J. A.; Fauids, D. Drugs 1992, 43, 259.
      (d) Ge, C.; Sang, X.; Yao, W.; Zhang L.; Wang, D. Green Chem. 2018, 20, 1805.

    5. [5]

      (a) Andersson, P. G.; Backvall, J. E. In Handbook of Organopalladium Chemistry for Organic Synthesis, Ed.: Negishi, E., Wiley-Interscience, New York, 2002, p. 1859.
      (b) Davies, H. M. L.; Long, M. S. Angew. Chem., Int. Ed. 2005, 44, 3518.
      (c) Jiang, L.; Buchwald, S. L. In Metal-Catalyzed Cross-Coupling Reactions, 2nd ed., Wiley-VCH, Weinheim, 2004, Vol. 2, p. 699.
      (d) Hartwig, J. F. In Handbook of Organopalladium Chemistry for Organic Synthesis, Ed.: Negishi, E., Wiley-Interscience, New York, 2002, p. 1051.

    6. [6]

      (a) Ranerand, K. D.; Ward, A. D. Aust. J. Chem. 1991, 44, 1749.
      (b) Cooper, M. A.; Lucas, M. A.; Taylor, J. M.; Ward, A. D.; Williamson, N. M. Synthesis 2001, 621.
      (c) Vicente, R. Org. Biomol. Chem. 2011, 9, 6469.

    7. [7]

      (a) Schultz, D. M.; Wolfe, J. P. Org. Lett. 2010, 12, 1028.
      (b) Caddick, S.; Koe, W. Tetrahedron Lett. 2002, 43, 9347.
      (c) Sharma, V.; Kumar, P.; Pathak, D. J. Heterocycl. Chem. 2010, 47, 491.
      (d) Lu, T.; Lu, Z.; Ma, Z. X.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2013, 113, 4862.

    8. [8]

      Cho, C. S.; Kim, J. S.; Oh, B. H. Tetrahedron 2000, 56, 7747.  doi: 10.1016/S0040-4020(00)00694-3

    9. [9]

      Cui, X. M. Chlor-Alkali Ind. 2000, 5, 172192(in Chinese).

    10. [10]

    11. [11]

      Lee, O. Y.; Law, K. L.; Yang, D. Org. Lett. 2009, 11, 3302.  doi: 10.1021/ol901111g

    12. [12]

      (a) Patel, S. J.; Jamison, T. F. Angew. Chem., Int. Ed. 2003, 42, 1364.
      (b) Patel, S. J.; Jamison, T. F. Angew. Chem., Int. Ed. 2004, 43, 3941.
      (c) Zhou, C. Y.; Zhu, S. F.; Wang, L. X., Zhou, Q. L. J. Am. Chem. Soc. 2010, 132, 10955.
      (d) Holmes, M.; Schwartz, L. A.; Krische, M. J. Chem. Rev. 2018, 118, 6026.

    13. [13]

      (a) Xie, Y. J.; Hu, J. H.; Wang, Y. Y.; Xia, C. G.; Huang, H. J. Am. Chem. Soc. 2012, 134, 20613.
      (b) Liu, Y.; Xie, Y.; Wang, H.; Huang, H. J. Am. Chem. Soc. 2016, 138, 4314.

    14. [14]

      (a) Bäckvall, J. E.; Nordberg, R. E.; Nyström, J. E.; Hoegberg, T.; Ulff, B. J. Org. Chem. 1981, 46, 3479.
      (b) You, S. L.; Zhu, X. Z.; Luo, Y. M.; Hou, X. L.; Dai, L. X. J. Am. Chem. Soc. 2001, 123, 7471.
      (c) Nagano, T.; Kobayashi, S. J. Am. Chem. Soc. 2009, 131, 4200.
      (d) Xie, Y. J.; Hu, J. H.; Wang, Y. Y.; Xia, C.; Huang, H. J. Am. Chem. Soc. 2012, 134, 20613.
      (e) Dubovyk, I.; Watson, I. D. G.; Yudin, A. K. J. Org. Chem. 2013, 78, 1559.
      (f) Cai, A. J.; Guo, W. S.; Martínez-Rodríguez, L.; Kleij, A. W. J. Am. Chem. Soc. 2016, 138, 14194.
      (g) Li, Y. G.; Li, L.; Yang, M. Y.; Kantchev, E. A. B. J. Org. Chem. 2017, 82, 4907.

    15. [15]

      (a) Trost, B. M.; Zhang, T.; Sieber, J. D. Chem. Sci. 2010, 1, 427.
      (b) Evans, P.; Grange, R.; Clizbe, E. Synthesis 2016, 48, 2911.
      (c) Guo, W.; Cai, A.; Xie, J.; Kleij, A. W. Angew. Chem., Int. Ed. 2017, 56, 11797.
      (d) Xia, C.; Shen, J.; Liu, D.; Zhang, W. Org. Lett. 2017, 19, 4251.
      (e) Wang, Y. N.; Wang, B. C.; Zhang, M. M.; Gao, X. W.; Li, T. R.; Lu, L. Q.; Xiao, W. J. Org. Lett. 2017, 19, 4094.

    16. [16]

      Yao, L.; Wang, C. J. Adv. Synth. Catal. 2015, 357, 384.  doi: 10.1002/adsc.201400790

    17. [17]

      Lu, B.; Feng, B.; Ye, H.; Chen, J. R.; Xiao, W. J. Org. Lett. 2018, 20, 3473.  doi: 10.1021/acs.orglett.8b01226

    18. [18]

      Ouyang, K.; Xi, Z. Acta Chim. Sinica 2013, 71, 13(in Chinese).

  • 加载中
    1. [1]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    2. [2]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    4. [4]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    5. [5]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    12. [12]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    13. [13]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    14. [14]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    15. [15]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(4)
  • Abstract views(708)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return