Citation: Feng Chunlai, Zhu Jie, Tang Qiujie, Zhou Aihua. Synthesis of ArSe-Substituted Flavone Derivatives Using Se Powder[J]. Chinese Journal of Organic Chemistry, ;2019, 39(4): 1187-1192. doi: 10.6023/cjoc201808011 shu

Synthesis of ArSe-Substituted Flavone Derivatives Using Se Powder

  • Corresponding author: Zhou Aihua, ahz@ujs.edn.cn
  • Received Date: 10 August 2018
    Revised Date: 20 September 2018
    Available Online: 11 April 2018

    Fund Project: Jiangsu University 1281290006Project supported by Jiangsu University (No. 1281290006)

Figures(2)

  • New flavone derivatives are highly valued in drug discovery due to their diversity of important bioactivities. Herein, one simple Cu-catalyzed method of constructing C-Se bonds on flavone structures using convenient Se powder via C-H functionalization is reported, regioselectively affording ArSe-substituted flavone derivatives in good yields.
  • 加载中
    1. [1]

      (a) Espargaro, A.; Ginex, T.; Vadell, M. D.; Busquets, M. A.; Estelrich, J.; Munoz-Torrero, D.; Luque, F. J.; Sabate, R. J. Nat. Prod. 2017, 80, 278.
      (b) Tsou, L. K.; Lara-Tejero, M.; RoseFigura, J.; Zhang, Z. J.; Wang, Y. C.; Yount, J. S.; Lefebre, M.; Dossa, P. D.; Kato, J.; Guan, F.; Lam, W.; Cheng, Y. C.; Galan, J. E.; Hang, H. C. J. Am. Chem. Soc. 2016, 138, 2209.
      (c) Cragg, G. M.; Grothaus, P. G.; Newman, D. J. Chem. Rev. 2009, 109, 3012.

    2. [2]

      (a) Chen, H.; Olatunji, O. J.; Zhou, Y. J. Nat. Med. 2016, 70, 610.
      (b) Zhou, Z.; Tang, M.; Liu, Y.; Zhang, Z.; Lu, R.; Lu, J. Anti-Cancer Drugs 2017, 28, 446.
      (c) Gaspar, A.; Matos, M. J.; Garrido, J.; Uriarte, E.; Borges, F. Chem. Rev. 2014, 114, 4960.

    3. [3]

      (a) Kim, Y.-W.; Hackett, J. C.; Brueggemeier, R. W. J. Med. Chem. 2004, 47, 4032.
      (b) Francisco, V.; Figueirinha, A.; Costa, G.; Liberal, J.; Ferreira, I.; Lopes, M. C.; García-Rodríguez, C.; Cruz, M. T.; Batista, M. T. J. Nat. Prod. 2016, 79, 1423.
      (c) Wang, Q.; Du, X.; Zhou, B.; Li, J.; Lu, W.; Chen, Q.; Gao, J. Biomed. Pharmacother. 2017, 96, 396.
      (d) Van Acker A. A. F.; Hageman, A. J.; Haenen R. M. M. G.; Van der Vijgh J. F. W.; Bast, A.; Menge, M. P. B. W. J. Med. Chem. 2000, 43, 3752.
      (e) Lin, S.; Koh, J.-J.; Aung, T. T.; Ling, W.; Sin, W.; Lim, F.; Wang, L.; Lakshminarayanan, R.; Zhou, L.; Tan, D.; Cao, D.; Beuerman, R. W.; Ren, L.; Liu S. J. Med. Chem. 2017, 60, 6152.
      (f) Ribeiro, A.; Piló-Veloso, D.; Romanha, A. J.; Carlos, L.; Zani, C. J. Nat. Prod. 1997, 60, 836.

    4. [4]

    5. [5]

      (a) Shirizi, A. N.; Tiwari, R.; Oh, D.; Sullivan, S.; Kumar, A.; Beni, Y.; Parang, K. Mol. Pharmaceutics 2014, 11, 3631.
      (b) Cao, S.; Durrani, F. A.; Rustum, Y. M. Clin. Cancer Res. 2004, 10, 2561.
      (c) Madhunapantula, S. V.; Desai, D.; Sharma, A.; Huh, S. J.; Amin, S.; Robertson, G. P. Mol. Cancer. Ther. 2008, 7, 1297.
      (d) Liu, M.; Li, Y.; Yu, L.; Xu, Q.; Jiang, X. Sci. China, Chem. 2018, 61, 294.
      (e) Yu, L.; Wu, Y.; Chen, T.; Pan, Y.; Xu, Q. Org. Lett. 2013, 15, 144.
      (f) Jing, X.; Yuan, D.; Yu, L. Adv. Synth. Catal. 2017, 359, 1194.
      (g) Wang, Y.; Yu, L.; Zhu, B.; Yu, L. J. Mater. Chem. A 2016, 4, 10828.
      (h) Yu, L.; Chen, F.; Ding, Y. ChemCatChem 2016, 8, 1033.
      (i) Yu, L.; Li, H.; Zhang, X.; Ye, J.; Liu, J.; Xu, Q.; Lautens, M. Org. Lett. 2014, 16, 1346.

    6. [6]

      (a) Zhao, W. N.; Xie, P.; Bian, Z. G.; Zhou, A. H.; Ge, H.; Zhang, M.; Ding, Y.; Zheng, L. J. Org. Chem. 2015, 80, 9167.
      (b) Niu, B.; Zhao, W. N.; Ding, Y. C.; Bian, Z.; Pittman, C. U. Jr.; Zhou, A. H.; Ge, H. J. Org. Chem. 2015, 80, 7251.
      (c) Yatabe, T.; Jin, X.; Mizuno, N.; Yamaguchi, K. ACS Catal. 2018, 8, 4969.
      (d) Zhao, X.; Zhou, J.; Lin, S.; Jin, X.; Liu, R. Org. Lett. 2017, 19, 976.
      (e) Yang, Y. Q. Nat. Prod. Res. 2016, 30, 1628.

    7. [7]

    8. [8]

      (a) Zhao, W. N.; Xie, P.; Bian, Z. G.; Zhou, A. H.; Ge, H.; Niu, B.; Ding, Y. C. RSC Adv. 2015, 5, 59861.
      (b) Shi, L.-F.; Zhang, X.-G.; Zhang, X.-H. Tetrahedron 2016, 72, 8617.

    9. [9]

    10. [10]

      (a) Rafique, J.; Saba, S.; Schneider, A. R.; Franco, M. S.; Silva, S. M.; Braga, A. L. ACS Omega 2017, 2, 2280.
      (b) Zhong, S.; Liu, Y.; Cao, X.; Wan, J.-P. ChemCatChem 2017, 9, 465.
      (c) Benhur, G.; Adriane, S.; Bruning, C. A.; Back, D. F.; Henrique, M., P.; Nogueira, C. W.; Zeni, G. Adv. Synth. Catal. 2011, 353, 2042.

    11. [11]

      (a) Min, L.; Wu, G.; Liu, M.; Gao, W.; Ding, J.; Chen, J.; Huang, X.; Wu, H. J. Org. Chem. 2016, 81, 7584.
      (b) Gao, C.; Wu, G.; Min, L.; Liu, M.; Gao, W.; Ding, J.; Chen, J.; Huang, X.; Wu, H. J. Org. Chem. 2017, 82, 250.

    12. [12]

      Tang, Q.; Bian, Z.; Wu, W.; Wang, J.; Xie, P.; Pittman, C. U., Jr.; Zhou, A. J. Org. Chem. 2017, 82, 10617.  doi: 10.1021/acs.joc.7b01320

    13. [13]

      (a) Stubbing, L.; Li, F.; Furkert, D.; Caprio, V.; Brimble, M. Tetrahedron 2012, 68, 6948.
      (b) Yang, Y.; Qi, X.; Liu, R.; He, Q.; Yang, C. RSC Adv. 2016, 6, 103895.
      (c) Jaen, J.; Wise, L.; Heffner, T.; Pugsley, T.; Meltzer, L. J. Med. Chem. 1991, 34, 248.
      (d) He, Q.; So, C.; Bian, Z.; Hayashi, T.; Wang, J. Chem.-Asian J. 2015, 10, 540.

    14. [14]

      Ding, Y. C.; Wu, W.; Zhao, W. N.; Li, Y.; Xie, P.; Huang, Y.; Liu, Y.; Zhou, A. H. Org. Biomol. Chem. 2016, 14, 1428.  doi: 10.1039/C5OB02073E

    15. [15]

      (a) Mohan, B.; Hwang, S.; Woo, H.; Park, K. H. Tetrahedron 2014, 70, 2699.
      (b) Soleiman-Beiji, M.; Yavari, I.; Sadeghizadeh, F. RSC Adv. 2015, 5, 87564.
      (c) Li, Z.; Ke, F.; Deng, H.; Xu, H.; Xiang, H.; Zhou, X. Org. Biomol. Chem. 2013, 11, 2943.
      (d) Singh, D.; Deobald, A. M.; Camargo, L. S.; Tabarelli, G.; Rodrigues, O. D.; Braga, A. Org. Lett. 2010, 12, 3288.
      (e) Guo, T. Synth. Commun. 2017, 47, 2053.

  • 加载中
    1. [1]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    2. [2]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    3. [3]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    4. [4]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    5. [5]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    6. [6]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    7. [7]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    8. [8]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    9. [9]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    10. [10]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    11. [11]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    12. [12]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    13. [13]

      Shan-Shan LiJuan LuoShu-Nuo LiangDan-Na ChenLi-Ning ChenCheng-Xue PanPeng-Ju Xia . Efficient and regioselective C=S bond difunctionalization through a three-component radical relay strategy. Chinese Chemical Letters, 2025, 36(6): 110424-. doi: 10.1016/j.cclet.2024.110424

    14. [14]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    15. [15]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    16. [16]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    17. [17]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    18. [18]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    19. [19]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    20. [20]

      Jingping HuJing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733

Metrics
  • PDF Downloads(3)
  • Abstract views(664)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return