Citation: Yu Jiajia, Yang Shan, Wu Zhen, Zhu Chen. Annulation of Benzylic Alcohols with Alkynes for Rapid and Efficient Synthesis of Indenes and Spiroindenes[J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 223-231. doi: 10.6023/cjoc201808009 shu

Annulation of Benzylic Alcohols with Alkynes for Rapid and Efficient Synthesis of Indenes and Spiroindenes

  • Corresponding author: Zhu Chen, chzhu@suda.edu.cn
  • Received Date: 10 August 2018
    Revised Date: 10 September 2018
    Available Online: 12 January 2018

    Fund Project: the National Natural Science Foundation of China 21722205Project supported by the National Natural Science Foundation of China (No. 21722205)

Figures(2)

  • As a type of important carbocyclic compounds, indenes and spiroindenes are not only widely found in natural products but extensively employed as synthetic building blocks in materials, pharmaceuticals, and asymmetric synthesis. An efficient and rapid synthesis of indenes and spiroindenes via the annulation of benzylic alcohols (or aryl-substituted cycloalkanols) with alkynes in the presence of TiCl4 or AlCl3 was desclosed. This reaction is normally completed within 30 min at room temperature and compatible with a variety of substituted alkynes. Two new C—C bonds are constructed during the reaction. Cycloalkanols such as cyclobutanol, cyclohexanol, cycloheptanol, cyclooctanol, and cyclododecanol are suitable substrates to afford a set of valuable spiroindenes. This method is featured with simple operation, short reaction time, and mild reaction conditions.
  • 加载中
    1. [1]

      (a) Huffman, J. W.; Padgett, L. W. Curr. Med. Chem. 2005, 12, 1395.
      (b) Shin, S.; Son, J. Y.; Choi, C.; Kim, S.; Lee, P. H. J. Org. Chem. 2016, 81, 11706.

    2. [2]

      Yao, X.-S.; Wang, N.-L.; Bei, Z.-G.; Liu, D.-L. CN 1594311, 2005[Chem. Abstr. 2006, 144, 184664].

    3. [3]

    4. [4]

    5. [5]

    6. [6]

      (a) Wang, B. Q. Coord. Chem. Rev. 2006, 250, 242.
      (b) Alt, H. G.; Kçppl, A. Chem. Rev. 2000, 100, 1205.
      (c) Zargarian, D. Coord. Chem. Rev. 2002, 233~234, 157.

    7. [7]

      (a) Hu, A.-G.; Fu, Y.; Xie, J.-H.; Zhou, H.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2002, 41, 2348.
      (b) Cheng, X.; Zhang, Q.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2005, 44, 1118.
      (c) Jia, Y.-X.; Zhong, J.; Zhu, S.-F.; Zhang, C.-M.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2007, 46, 5565.
      (d) Xu, B.; Li, M.-L.; Zuo, X.-D.; Zhu, S.-F.; Zhou, Q.-L. J. Am. Chem. Soc. 2015, 137, 8700.
      (e) Yang, X.-H.; Yue, H.-T.; Yu, N.; Li, Y.-P.; Xie, J.-H.; Zhou, Q.-L. Chem. Sci. 2017, 8, 1181.
      (f) Yang, S.; Che, W.; Wu, H.-L.; Zhu, S.-F.; Zhou, Q.-L. Chem. Sci. 2017, 8, 1977.
      (g) Bao, D.-H.; Wu, H.-L.; Liu, C.-L.; Xie, J.-H.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2015, 54, 8791.

    8. [8]

      (a) Patureau, F. W.; Besset, T.; Kuhl, N.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2154.
      (b) Tobisu, M.; Nakai, H.; Chatani, N. J. Org. Chem. 2009, 74, 5471.
      (c) Miyamoto, M.; Harada, Y.; Tobisu, M.; Chatani, N. Org. Lett. 2008, 10, 2975.
      (d) Jia, X. D.; Petrone, D. A.; Lautens, M. Angew. Chem., Int. Ed. 2012, 51, 9870.
      (e) Zeng, X. M.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2011, 133, 17638.
      (f) Zheng, H. J.; Xie, X.; Yang, J.; Zhao, C. G.; Jing, P.; Fang, B. W.; She, X. G. Org. Biomol. Chem. 2011, 9, 7755.
      (g) Ye, S.; Gao, K.; Zhou, H.; Yang, X.; Wu, J. Chem. Commun. 2009, 5406.
      (h) Li, C.; Wang, J. Tetrahedron Lett. 2009, 50, 2956.

    9. [9]

      (a) Kinoshita, H.; Hirai, N.; Miura, K. J. Org. Chem. 2014, 79, 8171.
      (b) Wu, L.; Shi, M.; Li, Y. X. Chem.-Eur. J. 2010, 16, 5163.
      (c) Niharika, P.; Satyanarayana, G. ChemistrySelect 2018, 3, 289.
      (d) Wang, J. L.; Zhang, L. X.; Jing, Y. F.; Huang, W.; Zhou, X. G. Tetrahedron Lett. 2009, 50, 4978.
      (e) Zhou, X. B.; Zhang, H. M.; Xie, X.; Li, Y. Z. J. Org. Chem. 2008, 73, 3958.
      (f) Wang, J. L.; Zhang, L. X.; Jing, Y. F.; Huang, W.; Zhou, X. G. Tetrahedron Lett. 2009, 50, 4978.
      (g) Liu, C.; Zhang, H.; Ding, L.; Liu, J. Chin. J. Chem. 2018, 36, 737.
      (h) Shen, G.; Sun, J.; Yan, C. Chin. J. Chem. 2016, 34, 412.

    10. [10]

      (a) Liu, Z. Q.; Wang, J. G.; Han, J.; Zhao, Y. K.; Zhou, B. Tetrahedron Lett. 2009, 50, 1240.
      (b) Li, H.; Jin, Y.; Wang, J.; Tian, S. K. Org. Biomol. Chem. 2009, 7, 3219.
      (c) Biswas, S.; Maiti, S.; Jana, U. Eur. J. Org. Chem. 2009, 14, 2354.
      (d) Ren, K.; Wang, M.; Wang. L. Eur. J. Org. Chem. 2010, 3, 565.

    11. [11]

      Liu, C. R.; Yang, F. L.; Jin, Y.; Ma, X. T.; Cheng, D. J.; Li, N.; Tian, S. K. Org. Lett. 2010, 12, 3832.  doi: 10.1021/ol101524w

    12. [12]

      Bu, X. L.; Hong, J. Q.; Zhou, X. G. Adv. Synth. Catal. 2011, 353, 2111.  doi: 10.1002/adsc.v353.11/12

    13. [13]

      Huang, W.; Zheng, P. Z.; Zhang, Z. X.; Liu, R. T.; Chen, Z. X.; Zhou, X. G. J. Org. Chem. 2008, 73, 6845.  doi: 10.1021/jo801210n

    14. [14]

    15. [15]

      (a) Zhao, H.; Fan, X.; Yu, J.; Zhu, C. J. Am. Chem. Soc. 2015, 137, 3490.
      (b) Ren, R.; Zhao, H.; Huan, L.; Zhu, C. Angew. Chem., Int. Ed. 2015, 54, 12692.
      (c) Ren, R.; Wu, Z.; Xu, Y.; Zhu, C. Angew. Chem., Int. Ed. 2016, 55, 2866.
      (d) Yu, J.; Yan, H.; Zhu, C. Angew. Chem., Int. Ed. 2016, 55, 1143.
      (e) Yu, J.; Zhao, H.; Liang, S.; Bao, X.; Zhu, C. Org. Biomol. Chem. 2015, 13, 7924.
      (f) Fan, X.; Zhao, H.; Yu, J.; Bao, X.; Zhu, C. Org. Chem. Front. 2016, 3, 227.
      (g) Ren, R.; Wu, Z.; Zhu, C. Chem. Commun. 2016, 52, 8160.
      (h) Wang, D.; Ren, R.; Zhu, C. J. Org. Chem. 2016, 81, 8043.
      (i) Huan, L.; Zhu, C. Org. Chem. Front. 2016, 3, 1467.
      (j) Wang, M.; Wu, Z.; Zhu, C. Org. Chem. Front. 2017, 4, 427.
      (k) Mao, W.; Zhu, C. J. Org. Chem. 2017, 82, 9133.
      (l) Mao, W.; Zhu, C. Synlett 2018, 29, 731.
      (m) Wang, D.; Mao, J.; Zhu, C. Chem. Sci. 2018, 9, 5805.

    16. [16]

      (a) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410.
      (b) Khoury, P. R.; Goddard, J. D. Tam, W. Tetrahedron 2004, 60, 8103.

  • 加载中
    1. [1]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    2. [2]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    3. [3]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    4. [4]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    5. [5]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    6. [6]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    7. [7]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    8. [8]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    9. [9]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    10. [10]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    11. [11]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    12. [12]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    13. [13]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    14. [14]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    15. [15]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    16. [16]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    17. [17]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    18. [18]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    19. [19]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    20. [20]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

Metrics
  • PDF Downloads(26)
  • Abstract views(1812)
  • HTML views(340)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return