Citation: Yan Peipei, Wang Ting, Zhang Dan, Ma Xiaoxue. Progress in Fluorescence Sensors for Detection of Thiols[J]. Chinese Journal of Organic Chemistry, ;2019, 39(4): 916-928. doi: 10.6023/cjoc201807055 shu

Progress in Fluorescence Sensors for Detection of Thiols

  • Corresponding author: Yan Peipei, 1458851831@qq.com
  • Received Date: 31 July 2018
    Revised Date: 11 October 2018
    Available Online: 28 April 2018

Figures(38)

  • Sulfhydryl compounds, such as cysteine (Cys), homocysteine (Hcy), glutathione (GSH) and so on, play an important role in the normal human physiological processes. Molecular fluorescent probes have attracted much attention of scholar in the detection of sulfhydryl compounds, since it has the advantage of good selectivity, high sensitivity, good biocompatibility and real-time in situ monitoring. At present, the design of thiol-based fluorescent probes is mainly based on the strong nucleophilicity of sulfhydryl groups. In this paper, the synthesis of fluorescent probes for detecting sulfhydryl compounds, which was reported from 2013 to 2018, is reviewed based on the different mechanism of the reaction between fluorescence probe and sulfhydryl, including Michael addition, cyclization of aldehyde groups, sulfonamides or sulfonates of the lysis, natural chemical linkage and so on. The detection limit of the probe, response time, equivalence ratio were elaborated.
  • 加载中
    1. [1]

      Schulz, J. B.; Lindenau, J.; Seyfried, J.; Dichgans, J. Eur. J. Biochem. 2000, 267(16), 4904.  doi: 10.1046/j.1432-1327.2000.01595.x

    2. [2]

      Haugaard, N. Ann. N. Y. Acad. Sci. 2000, 899(1), 148.
       

    3. [3]

      Khoo, H. E.; Chen D. S.; Yuen, R. Toxicon 1998, 36(3), 469.
       

    4. [4]

      Benathan, M.; Virador, V.; Furumura, M.; Kobayashi, N.; Panizzon, R. G.; Hearing, V. J. Cell. Mol. Biol. 1999, 45(7), 981.
       

    5. [5]

      Zhang, Z. X.; Geng, D. Y.; Han, Q.; Liang, S. D.; Guo, H. R. J. Fish Biol. 2013, 83(5), 1287.  doi: 10.1111/jfb.2013.83.issue-5

    6. [6]

      Uchida, E.; Uemura, H.; Tanaka, T.; Nishikawa, S.; Uesugi, S.; Tanaka, A.; Morikawa, M.; Hayakawa, T.; Ikehara, M. Chem. Pharm. Bull. 1991, 39(1), 150.  doi: 10.1248/cpb.39.150

    7. [7]

      Kulwin, M. H. J. Invest. Dermatol. 1953, 20(3), 237.  doi: 10.1038/jid.1953.26

    8. [8]

      Sawamoto, O.; Kurisu, K.; Kuwamura, M.; Kotani, T.; Yamate, J.; Yamate, J. Exp. Toxicol. Pathol. 2003, 55(2~3), 121.
       

    9. [9]

      Badawy, A. H.; Abdel.; Aal, S. F.; Samour, S. A. J. Egypt. Soc. Parasitol. 1989, 19(2), 563.
       

    10. [10]

      Shahrokhian, S.; Lead Am. J. Anal. Chem. 2001, 73(24), 5972. 

    11. [11]

      Tan, B.; Venketasubramanian, N.; Vrooman, H.; Cheng, C. Y.; Wong, T. Y.; Ikram, M. K.; Chen, C.; Hilal, S. Alzheimera Dis. 2018, 62(2), 877.  doi: 10.3233/JAD-170796

    12. [12]

      Doody, R. S.; Demirovic, J.; Ballantyne, C. M.; Chan, W.; Barber, R.; Powell, S.; Pavlik, V. Alzheimers Dement. (Amst.) 2015, 1(4), 464.
       

    13. [13]

      Dietrichmuszalska, A.; Malinowska, J.; Olas, B.; Głowacki, R.; Bald, E.; Wachoeicz, B.; Rabe-Jabłońska, J. Neurochem. Res. 2012, 37(5), 1057.  doi: 10.1007/s11064-012-0707-3

    14. [14]

      Elkhairy, L. Ueland, P. M.; Refsum, H.; Graham, I. M.; Vollset, S. E. Circulation 2001, 103(21), 2544.  doi: 10.1161/01.CIR.103.21.2544

    15. [15]

      Stamler, J. S.; Slivka, A. Homocysteine Metabolism: From Basic Science to Clinical Medicine, Springer, US, 1997, pp. 211~222.

    16. [16]

      Fraternale, A.; Casabianca, A.; Orlandi, C.; Cerasi, A.; Chiarantini, L.; Brandi, G.; Magnani, M. Antiviral Res.2002, 56(3), 263.  doi: 10.1016/S0166-3542(02)00128-6

    17. [17]

      Morgenstern, I.; Raijmakers, M. T. M.; Peters, W. H. M.; Hoensch, H.; Kirch, W. Dig. Dis. Sci. 2003, 48(10), 2083.  doi: 10.1023/A:1026338812708

    18. [18]

      Lv, Z.; Sun, Z.; Song, C.; Lu, S. M.; Chen, G.; You, G. M. Talanta 2016, 161, 228-237.  doi: 10.1016/j.talanta.2016.08.040

    19. [19]

      Kawanishi, S. Biochim. Biophys. Acta, Gen. Subj. 2002, 1570(1), 47.

    20. [20]

      Ercal, N.; Le, K.; Treeratphan, P.; Matthews, R. Biomed. Chromatogr. 2015, 10(1), 15.
       

    21. [21]

      Baron, M.; Sochor, J. Int. J. Electrochem. Sci. 2013, 8(9), 11072.
       

    22. [22]

      Sippel, T. O. Histochem. J. 1978, 10(5), 597.  doi: 10.1007/BF01003140

    23. [23]

      Chen, J.; Jiang, X.; Carroll, S. L.; Huang, J.; Wang, J. Org. Lett. 2015, 17(24), 5978.  doi: 10.1021/acs.orglett.5b02910

    24. [24]

      Ren, W. X.; Han, J.; Pradhan, T.; Lim, J. Y.; Lee, J. H.; Lee, J.; Kim, J. H.; Kim, J. S. Biomaterials 2014, 35(13), 4157.  doi: 10.1016/j.biomaterials.2014.01.055

    25. [25]

      Niu, L. Y.; Chen, Y. Z.; Zheng, H. R.; Wu, L. Z.; Tung, C. H.; Yang, Q. Z. Chem. Soc. Rev. 2015, 44(17), 6143.  doi: 10.1039/C5CS00152H

    26. [26]

      Fan, W.; Huang, X.; Shi, X.; Wang, Z.; Lu, Z. L.; Fan, C. H.; Bo, Q. B. Spectrochim. Acta, Part A 2017, 173, 918.  doi: 10.1016/j.saa.2016.10.060

    27. [27]

      Dai, X.; Zhang, T.; Liu, Y. Z.; Yan, T.; Li, Y.; Miao, J. Y.; Zhao, B. X. Sens. Actuators, B 2015, 207, 872.  doi: 10.1016/j.snb.2014.10.082

    28. [28]

      Lim, S. Y.; Yoon, D. H.; Ha, D. Y.; Ahn, J. M.; Kim, D.; Kown, H.; Ha, H. J.; Kim, H. J. Sens. Actuators, B 2013, 188(11), 111.
       

    29. [29]

      Huo, F.; Kang, J.; Yin, C.; Yue, Y. K.; Hao, J. S.; Chao, J. B.; Liu, D. S. Sens. Actuators, B 2015, 207(7), 139.
       

    30. [30]

      Qu, L.; Yin, C.; Huo, F.; Li, J.; Chao, J.; Zhang, Y. Sens. Actuators, B 2014, 195(5), 246.
       

    31. [31]

      Shen, Y.; Liu, C.; Zhang, Y.; Zhang, X.; Zhang, C.; Jin, J.; Liu, X.; Li, H.; Yao, S. J. Anal. Methods Chem. 2015, 7(15), 6419.
       

    32. [32]

      Liu, T.; Huo, F.; Yin, C.; Li, J.; Chao, J.; Zhang, Y. Dyes Pigm. 2016, 128, 209.  doi: 10.1016/j.dyepig.2015.12.031

    33. [33]

      Zhao, Y.; Xue, Y.; Li, H.; Zhu, R.; Ren, Y.; Shi, Q.; Wang, S.; Guo, W. Spectrochim. Acta, Part A 2017, 175, 215.  doi: 10.1016/j.saa.2016.12.031

    34. [34]

      Yue, Y.; Huo, F.; Peng, N.; Zhang, Y.; Chao, J.; Meng, X.; Yin, C. J. Am. Chem. Soc. 2017, 139(8), 3181.  doi: 10.1021/jacs.6b12845

    35. [35]

      Sok, N.; Nikolantonaki, M.; Guyot, S.; Nguyen, T. D.; Viaux, A. S.; Bagala, F.; Rousselin, Y.; Husson, F.; Gougeon, R.; Saurel, R. Sens. Actuators, B 2016, 242, 865.

    36. [36]

      Long, L.; Zhou, L.; Wang, L.; Meng, S.; Gong, A.; Du, F.; Zhang, C. Org. Biomol. Chem. 2013, 11(47), 8214.  doi: 10.1039/c3ob41741g

    37. [37]

      Dai, C. G.; Du, X. J.; Song, Q. H. J. Org. Chem. 2015, 80(24), 12088.  doi: 10.1021/acs.joc.5b02041

    38. [38]

      Ou-Yang, J.; Li, C. Y.; Li, Y. F.; Fei, J.; Xu, F.; Li, S. J.; Nie, S. X. Sens. Actuators, B 2017, 240, 1165.  doi: 10.1016/j.snb.2016.09.074

    39. [39]

      Meng, X.; Ye, W.; Wang, S.; Feng, Y; Chen, M.; Zhu, M.; Guo, Q. Sens. Actuators, B 2014, 201(4), 520.

    40. [40]

      Chen, C.; Liu, W.; Xu, C.; Liu, W. Biosens. Bioelectron. 2016, 85, 46.  doi: 10.1016/j.bios.2016.04.098

    41. [41]

      Zhang, J.; Lv, Y.; Zhang, W.; Ding, H.; Liu, R.; Zhao, Y.; Zhang, G.; Tian, Z. Talanta 2016, 146, 41.  doi: 10.1016/j.talanta.2015.08.025

    42. [42]

      Kong, F.; Liu, R.; Chu, R.; Wang, X.; Xu, K.; Tang, B. Chem. Commun. 2013, 49(80), 9176.  doi: 10.1039/c3cc45519j

    43. [43]

      Gong, D.; Tian, Y.; Yang, C.; Iqbal, A.; Wang, Z.; Liu, W.; Qin, W.; Zhu, X.; Guo, H. Biosens. Bioelectron. 2016, 85, 178.  doi: 10.1016/j.bios.2016.05.013

    44. [44]

      Gao, H.; Li, Z.; Zhao, Y.; Qi, H.; Zhang, C. Sens. Actuators, B 2017, 245, 853.  doi: 10.1016/j.snb.2017.01.190

    45. [45]

      Kim, S. K.; Gupta, M.; Lee, H. I. Sens. Actuators, B 2017, 257, 728.

    46. [46]

      Wang, J.; Cheng, Z.; Zhang, J.; Zhu, X.; Liu, X.; Wang, Q.; Zhang, H. Spectrochim. Acta, Part A 2016, 166, 31.  doi: 10.1016/j.saa.2016.05.004

    47. [47]

      Chen, S.; Li, H.; Hou, P. Tetrahedron 2017, 73(5), 589.  doi: 10.1016/j.tet.2016.12.049

    48. [48]

      Wei, M.; Yin, P.; Shen, Y.; Zhang, L.; Deng, J.; Xue, S.; Li, H.; Guo, B.; Zhang, Y.; Yao, S. Chem. Commun. 2013, 49(41), 4640.  doi: 10.1039/c3cc39045d

    49. [49]

      Liu, Y.; Xiang, K.; Guo, M; Tian, B.; Zhang, J. L. Tetrahedron Lett. 2016, 57(23), 2478.  doi: 10.1016/j.tetlet.2016.04.068

    50. [50]

      Fan, J.; Han, Z.; Yao, K.; Peng, X. J. Sci. Rep. 2016, 6, 19562.  doi: 10.1038/srep19562

    51. [51]

      Yoshida, M.; Kamiya, M.; Yamasoba, T.; Urano, Y. Bioorg. Med. Chem. Lett. 2014, 24(18), 4363.  doi: 10.1016/j.bmcl.2014.08.033

    52. [52]

      Wang, K.; Leng, T.; Liu, Y.; Wang, C.; Shi, P.; Shen, Y.; Zhu, W. H. Sens. Actuators, B 2017, 248, 338.  doi: 10.1016/j.snb.2017.03.127

    53. [53]

      Xu, K.; Qiang, M.; Gao, W.; Su, R. Chem. Sci. 2013, 4(3), 1079.  doi: 10.1039/c2sc22076h

    54. [54]

      Zheng, L. Q.; Li, Y.; Yu, X. D.; Xu, J. J.; Chen, H. Y. Anal. Chim. Acta 2014, 850, 71.  doi: 10.1016/j.aca.2014.09.004

    55. [55]

      Lim, S. Y.; Na, M. J.; Kim, H. J. Sens. Actuators, B 2013, 185(8), 720.

    56. [56]

      Shen, W.; Ge, J.; He, S.; Zhang, R.; Zhao, C.; Fan, Y.; Yu, S.; Liu, B.; Zhu, Q. Chem. Asian J. 2017, 12(13), 1532.  doi: 10.1002/asia.v12.13

    57. [57]

      Song, L.; Ma, L. M.; Qian, S.; Zhang, W. B.; Lan, M. B.; Qian, J. H. Chin. Chem. Lett. 2016, 27(3), 330.  doi: 10.1016/j.cclet.2015.12.012

    58. [58]

      Dai, X.; Wang, Z. Y.; Du, Z. F.; Cui, J.; Miao, J. Y.; Zhao, B. X. Anal. Chim. Acta 2015, 900, 103.  doi: 10.1016/j.aca.2015.10.023

    59. [59]

      Hou, X.; Li, Z.; Li, B.; Liu, C.; Xu, Z. Sens. Actuators, B 2018, 260, 295..  doi: 10.1016/j.snb.2018.01.013

    60. [60]

      Vigneaud, V. D.; Ressler, C.; Swan, C. J. M. J. Am. Chem. Soc. 1953, 75(19), 4879.  doi: 10.1021/ja01115a553

    61. [61]

      Lv, H.; Yang, X. F.; Zhong, Y.; Guo, Y.; Li, Z.; Li, H. Anal. Chem. 2014, 86(3), 1800.  doi: 10.1021/ac4038027

    62. [62]

      He, G.; Li, J.; Yang, L.; Hou, C.; Ni, T.; Yang, Z.; Qian, X.; Li, C. Plos One. 2016, 11(2), e0148026.  doi: 10.1371/journal.pone.0148026

    63. [63]

      Sun, Q.; Sheng, J. Chem. Ind. Eng. Prog. 1997, 10(1), 48.

    64. [64]

      Zhang, L.; Wang, E. Nano Today 2014, 9(1), 132.  doi: 10.1016/j.nantod.2014.02.010

    65. [65]

      T Tian, D.; Qian, Z.; Xia, Y.; Zhu, C. Langmuir 2012, 28(8), 3945.  doi: 10.1021/la204380a

    66. [66]

      Xu, X.; Qiao, J.; Li, N.; Qi, L.; Zhang, S. Anal. Chim. Acta 2015, 879, 97.  doi: 10.1016/j.aca.2015.03.036

    67. [67]

      Zhang, S.; Qin, W.; Liu, X.; Zhang, J. mBio 2017, 8(6), e01620.
       

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    4. [4]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    5. [5]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    6. [6]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    7. [7]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    8. [8]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    9. [9]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    10. [10]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    11. [11]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    12. [12]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    15. [15]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    16. [16]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    17. [17]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    18. [18]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    19. [19]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    20. [20]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

Metrics
  • PDF Downloads(45)
  • Abstract views(2775)
  • HTML views(476)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return