Citation: WangYang diandian, Yu Xiaojun, Fu Haiyan, Zheng Xueli, Chen Hua, Li Ruixiang. Pd/1, 3-Bis(diphenylphosphino)propane Catalyzed Arylation of Benzoxazoles at C-2 Position with Aryl Bromides[J]. Chinese Journal of Organic Chemistry, ;2019, 39(2): 482-490. doi: 10.6023/cjoc201807050 shu

Pd/1, 3-Bis(diphenylphosphino)propane Catalyzed Arylation of Benzoxazoles at C-2 Position with Aryl Bromides

  • Corresponding author: Li Ruixiang, liruixiang@scu.edu.cn
  • Received Date: 27 July 2018
    Revised Date: 5 September 2018
    Available Online: 10 February 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21572137, 21871187), the Key Program of Sichuan Science and Technology Project (No. 2018GZ0312)the National Natural Science Foundation of China 21572137the Key Program of Sichuan Science and Technology Project 2018GZ0312the National Natural Science Foundation of China 21871187

Figures(5)

  • A catalyst system combined of PdCl2 with 1, 3-bis(diphenylphosphion)propane (dppp), which was simple and from commercially available materials, was reported for the highly efficient arylation of benzoxazoles at C-2 position with aryl bromides. This catalytic system could tolerate a great number of functional groups in benzoxazole and bromobenzene. With a low PdCl2 loading of 0.01 mol%, aryl bromides could be completely converted into the desired products for 24 h. If the loading of catalyst was up to 0.10 mol%, most of substrates could give more than 90% yields in 6 h. The exploration of the reaction mechanism discovered that Pd nanoparticles were formed during this reaction. The morphology and composition analysis of the Pd nanoparticles with transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) indicated that dppp played a key role to block the aggregation of palladium particles. In addition, the ring-opening pathway of benzoxazoles in the reaction process was proved by control experiments. Hot filtration experimental and high resolution mass spectrum (HRMS) analysis of filtrate suggested that the real active species were Pd(0)-Pd(Ⅱ)/dppp complexes.
  • 加载中
    1. [1]

      (a) Seth, K.; Garg, S. K.; Kumar, R.; Purohit, P.; Meena, V. S.; Goyal, R.; Banerjee, U. C.; Chakraborti, A. K. ACS Med. Chem. Lett. 2014, 5, 512.
      (b) Noel, S.; Cadet, S.; Gras, E.; Hureau, C. Chem. Soc. Rev. 2013, 42, 7747.

    2. [2]

      He, J.; Lin, F.; Yang, X. F.; Wang, D.; Tan, X. H.; Zhang, S. J. Org. Process Res. Dev. 2016, 20, 1093.  doi: 10.1021/acs.oprd.6b00168

    3. [3]

      Zhang, Z.; Zhao, D.; Dai, Y.; Cheng, M. S.; Geng, M. Y.; Shen, J. K.; Ma, Y. C.; Ai, J.; Xiong, B. Molecules 2016, 21, 1407.  doi: 10.3390/molecules21101407

    4. [4]

      Abdellaoui, F.; Youssef, C.; Ammar, H. B.; Roisnel, T.; Soulé, J. F.; Doucet, H. ACS Catal. 2016, 6, 4248.  doi: 10.1021/acscatal.6b00678

    5. [5]

      Kosugi, M.; Koshiba, M.; Atoh, A.; Sano, H.; Migita, T. B. Chem. Soc. Jpn. 1986, 59, 677.  doi: 10.1246/bcsj.59.677

    6. [6]

      Derridja, F.; Djebbar, S.; Benali-Baitich, O.; Doucet, H. J. Organomet. Chem. 2008, 693, 135.  doi: 10.1016/j.jorganchem.2007.10.028

    7. [7]

      Gao, F.; Kim, B. S.; Walsh, P. J. Chem. Commun. 2014, 50, 10661.  doi: 10.1039/C4CC05307A

    8. [8]

      (a) Yan, X. M.; Mao, X. R.; Huang, Z. Z. Heterocycles 2011, 83, 1371.
      (b) Alagille, D.; Baldwin, R. M.; Tamagnan, G. D. Tetrahedron 2005, 46, 1349.
      (c) Wang, M.; Li, D.; Zhou, W.; Wang, L. Tetrahedron 2012, 68, 1926.

    9. [9]

      Huang, J. k.; Chan, J.; Chen, Y.; Borths, C. J.; Baucom, K. D.; Larsen, R. D.; Faul, M. M. J. Am. Chem. Soc. 2010, 132, 3674.  doi: 10.1021/ja100354j

    10. [10]

      Li, S.; Wan, P. H.; Ai, J.; Sheng, R.; Hu, Y. Z.; Hu, Y. H. Adv. Synth. Catal. 2017, 359, 772.  doi: 10.1002/adsc.v359.5

    11. [11]

      Seth, K.; Purohit, P.; Chakraborti, A. K. Org. Lett. 2014, 16, 2334.  doi: 10.1021/ol500587m

    12. [12]

      (a) Arslan, H.; Özdemİr, İ.; Vanderveer, D.; Demİr, S.; Çetİnkaya, B. J. Coord. Chem. 2009, 62, 2591.
      (b) Yang, L. G.; Yuan, J. W.; Mao, P.; Guo, Q. RSC Adv. 2015, 5, 107601.

    13. [13]

      (a) Lewis, J. C.; Wu, J. Y.; Bergman, R. G.; Ellman, J. A. Angew. Chem., Int. Ed. 2006, 45, 1589.
      (b) Strotman, N. A.; Chobanian, H. R.; Guo, Y.; He, J. F.; Wilson, J. E. Org. Lett. 2010, 12, 3578.

    14. [14]

      (a) Zhao, D. B.; Wang, W. D.; Lian, S.; Yang, F.; Lan, J. B.; You, J. S. Chem.-Eur. J. 2009, 15, 1337.
      (b) Wang, X.; Gribkov, D. V.; Sames, D. J. Org. Chem. 2007, 72, 1476.
      (c) Le, H. T. N.; Nguyen, T. T.; Vu, P. H. L.; Truong, T.; Phan, N. T. S. J. Mol. Catal. A: Chem. 2014, 391, 74.

    15. [15]

      (a) Jiang, Z. J.; Wang, W.; Zhou, R.; Zhang, L.; Fu, H. Y.; Zheng, X. L.; Chen, H.; Li, R. X. Catal. Commun. 2014, 57, 14.
      (b) Zhou, R.; Wang, W.; Jiang, Z. J.; Fu, H. Y.; Zheng, X. L.; Zhang, C. C.; Chen, H.; Li, R. X. Catal. Sci. Technol. 2014, 4, 746.
      (c) Zhou, R.; Wang, W.; Jiang, Z. J.; Wang, K.; Fu, H. Y.; Zheng, X. L.; Chen, H.; Li, R. X. Chem. Commun. 2014, 50, 6023.

    16. [16]

      Yu, P.; Zhang, G. Y.; Chen, F.; Cheng, J. Tetrahedron Lett. 2012, 53, 4588.  doi: 10.1016/j.tetlet.2012.06.076

    17. [17]

      Huang, J. K.; Chan, J.; Chen, Y.; Borths, C. J.; Baucom, K. D.; Larsen, R. D.; Faul, M. M. J. Am. Chem. Soc. 2010, 132, 3674.  doi: 10.1021/ja100354j

    18. [18]

      Simmons, E. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51, 3066.  doi: 10.1002/anie.v51.13

    19. [19]

      (a) Kim, Y.; Kim, H.; Kim, J. D. RSC Adv. 2018, 8, 2441.
      (b) Ho, C. E.; Hsieh, W. Z.; Lee, P. T.; Huang; Y. H.; Kuo, T. T. Appl. Surf. Sci. 2018, 434, 1353.

    20. [20]

      Zhang, Y.; Zhao, Y.; Luo, Y.; Xiao, L.Q.; Huang, Y. X.; Li, X. R.; Peng, Q. T.; Liu, Y. Z.; Yang, B.; Zhu, C. Z.; Zhou, X. C.; Zhang, J. M. Org. Lett. 2017, 19, 6470.  doi: 10.1021/acs.orglett.7b02967

    21. [21]

      Sánchez, R. S.; Zhuravlev, F. A. J. Am. Chem. Soc. 2007, 129, 5824.  doi: 10.1021/ja0679580

    22. [22]

      (a) Jutzi, P.; Gilge, U. J. Organomet. Chem. 1983, 246, 159.
      (b) Kernbach, U.; Lugger, T.; Hahn, F. E.; Fehlhammer, W. P. J. Organomet. Chem. 1997, 541, 51.

    23. [23]

      Patra, A.; James, A.; Das, T. K.; Biju, A. T. J. Org. Chem. 2018, 83, 14820.  doi: 10.1021/acs.joc.8b02598

    24. [24]

      Yin, Y. Z.; Yue, X. Y.; Zhong, Q.; Jiang, H.; Bai, R. P.; Lan, Y.; Zhang, H. Adv. Synth. Catal. 2018, 360, 1639.  doi: 10.1002/adsc.v360.8

    25. [25]

      Ueda, S.; Nagasawa, H. Angew. Chem., Int. Ed. 2008, 47, 6411.  doi: 10.1002/anie.v47:34

    26. [26]

      Chang, W. C.; Sun, Y. K.; Huang, Y. Heteroat. Chem. 2017, 28, e21360.  doi: 10.1002/hc.2017.28.issue-2

    27. [27]

      Yuan, X. l.; Liu, Y. F.; Qin, M. D.; Yang, X. Y., Chen, B. H. ChemistrySelect 2018, 3, 5541.  doi: 10.1002/slct.201800874

    28. [28]

      Ackermann, L.; Althammer, A.; Fenner, S. Angew. Chem., Int. Ed. 2009, 48, 201.  doi: 10.1002/anie.200804517

    29. [29]

      Naeimi, H.; Rahmatinejad, S. Synth. React. Inorg. Met.-Org. Chem. 2016, 46, 471.  doi: 10.1080/15533174.2014.988794

    30. [30]

      Ghodbane, A.; D'Altério, S.; Saffon, N.; McClenaghan, N. D.; Scarpantonio, L.; Jolinat, P.; Fery-Forgues; S. Langmuir 2012, 28, 855.  doi: 10.1021/la2036554

    31. [31]

      Hachiya, H.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2009, 11, 1737.  doi: 10.1021/ol900159a

    32. [32]

      Shibahara, F.; Yamaguchi, E.; Murai, T. Chem. Commun. 2010, 46, 2471.  doi: 10.1039/b920794e

    33. [33]

      Li, Y. Q.; Yu, X. J.; Wang, Y. D. D.; Fu, H. Y.; Zheng, X. L.; Chen, H.; Li, R. X. Organometallics 2018, 37, 979.  doi: 10.1021/acs.organomet.8b00005

    34. [34]

      Eastman, K. C. US 3458506, 1967[Chem. Abstr. 1969, 71, 125998d].

    35. [35]

      Singh, V.; Singh, A.; Singh, G.; Verma, R. K.; Mall, R. Med. Chem. Res. 2018, 27, 735.  doi: 10.1007/s00044-017-2097-1

    36. [36]

      Jung, M. R.; Choi, S. W.; Cho, K. W. J. Heterocycl. Chem. 2000, 37, 969.  doi: 10.1002/jhet.v37:4

    37. [37]

      Evindar, G.; Batey, R. A. J. Org. Chem. 2006, 71, 1802.  doi: 10.1021/jo051927q

    38. [38]

      Dai, W. C.; Wang, Z. X. Org. Chem. Front. 2017, 4, 1281.  doi: 10.1039/C7QO00174F

  • 加载中
    1. [1]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    2. [2]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    3. [3]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    4. [4]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    5. [5]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    6. [6]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    7. [7]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    8. [8]

      Yunqiang LiYongxian HuangSinuo LiHe HuangZhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051

    9. [9]

      Zhao GuYunhui YangSong YeCongyang Wang . 2,3-Arylacylation of allenes through synergetic catalysis of palladium and N-heterocyclic carbene. Chinese Chemical Letters, 2025, 36(5): 110334-. doi: 10.1016/j.cclet.2024.110334

    10. [10]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    11. [11]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    12. [12]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    13. [13]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    14. [14]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    15. [15]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

    16. [16]

      Yuanyuan ZengFang LiuJun WangBianfei ShaoTao HeZhongzheng XiangYan WangShunyao ZhuTian YangSiting YuChangyang GongLei Liu . Fisetin micelles precisely exhibit a radiosensitization effect by inhibiting PDGFRβ/STAT1/STAT3/Bcl-2 signaling pathway in tumor. Chinese Chemical Letters, 2025, 36(2): 109734-. doi: 10.1016/j.cclet.2024.109734

    17. [17]

      Tianyi YangFangxi SuDehuan ShiShenghong ZhongYalin GuoZhaohui LiuJianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444

    18. [18]

      Kun YangAnhui LiPeng ZhangGuilin LiuLiusai HuangYumeng FoLuyuan YangXiangyang JiJian LiuWeiyu Song . Hierarchical zeolites stabilized cobalt(Ⅱ) as propane dehydrogenation catalyst: Enhanced activity and coke tolerance via alkaline post-treatment. Chinese Chemical Letters, 2025, 36(5): 110663-. doi: 10.1016/j.cclet.2024.110663

    19. [19]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    20. [20]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

Metrics
  • PDF Downloads(6)
  • Abstract views(622)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return