Citation: Huang Jin, Fu Ronghui, Jing Linhai, Qin Dabin, Huang Kun, Wang Wei. A Convenient Access to 3-Substituted Benzofuran Derivatives via Palladium Nanoparticles-Catalyzed Intramolecular Heck Reaction[J]. Chinese Journal of Organic Chemistry, ;2019, 39(2): 456-462. doi: 10.6023/cjoc201807040 shu

A Convenient Access to 3-Substituted Benzofuran Derivatives via Palladium Nanoparticles-Catalyzed Intramolecular Heck Reaction

  • Corresponding author: Wang Wei, wangwei1987@cwnu.edu.cn
  • Received Date: 23 July 2018
    Revised Date: 29 August 2018
    Available Online: 17 February 2018

    Fund Project: the Science and Technology Program of Sichuan Province 2018JY0485the National Natural Science Foundation of China 21602144Project supported by the National Natural Science Foundation of China (No. 21602144), and the Science and Technology Program of Sichuan Province (No. 2018JY0485)

Figures(2)

  • A concise and efficiently route for the synthesis of 3-substituted benzofurans via the intramolecular Heck reaction of bromoaryl 3-phenylallyl ethers has been developed. This simple and highly efficient palladium nanoparticles-catalyzed system showed good catalytic activity. The desired products were affored in good to high yields (45%~96%).
  • 加载中
    1. [1]

      (a) Lin, Y.-L.; Tsai, Y.-L.; Kuo, Y.-H.; Liu, Y.-H.; Shiao, M.-S. J. Nat. Prod. 1999, 62, 1500.
      (b) Boto, A.; Alvarez, L. Heterocycles in Natural Product Synthesis, Wiley-VCH, Weinheim, Germany, 2011, pp. 97~152.
      (c) La Clair, J. J.; Rheingold, A. L.; Burkart, M. D. J. Nat. Prod. 2011, 74, 2045.
      (d) Simonetti, S. O.; Larghi, E. L.; Bracca, A. B. J.; Kaufman, T. S. Nat. Prod. Rep. 2013, 30, 941./

    2. [2]

      (a) Flynn, B. L.; Hamel, E.; Jung, M. K. J. Med. Chem. 2002, 45, 2670.
      (b) Carlsson, B.; Singh, B. N.; Temciuc, M.; Nilsson, S.; Li, Y. L.; Mellin, C.; Malm, J. J. Med. Chem. 2002, 45, 623.
      (c) Cacchi, S.; Fabrizi, G.; Goggiamani, A. Curr. Org. Chem. 2006, 10, 1423.
      (d) Kirilmis, C.; Ahmedzade, M.; Servi, S.; Koca, M.; Kizirgil, A.; Kazaz, C. Eur. J. Med. Chem. 2008, 43, 300.

    3. [3]

       

    4. [4]

      (a) Ziegert, R. E.; Toräng, J.; Knepper, K.; Bräse, S. J. Comb. Chem. 2005, 7, 147.
      (b) Tsuji, H.; Mitsui, C.; Ilies, L.; Sato, Y.; Nakamura, E. J. Am. Chem. Soc. 2007, 129, 11902.
      (c) Walker, B.; Tamayo, A. B.; Dang, X. D.; Seo, J. H.; Garcia, A.; Tantiwiwat, M.; Nguyen, T. Q. Adv. Funct. Mater. 2009, 19, 3063.
      (d) Zhang, P.; Yang, Y.-W.; Zheng, X.-L.; Huang, W. H.; Ma, Z.; Shen, Z. R. Chem. Pharm. Bull. 2012, 60, 270.
      (e) Aiken, S.; Allsopp, B.; Booth, K.; Gabbutt, C. D.; Heron, B. M.; Rice, C. R. Tetrahedron 2014, 70, 9352.

    5. [5]

      Radadiya, A.; Shah, A. Eur. J. Med. Chem. 2015, 97, 356.  doi: 10.1016/j.ejmech.2015.01.021

    6. [6]

      (a) Itokawa, H.; Ibraheim, Z. Z.; Qiao, Y. F.; Takeya K. Chem. Pharm. Bull. 1993, 41, 1869.
      (b) Lee, K.-H.; Huang, B.-R. Eur. J. Med. Chem. 2002, 37, 333.
      (c) Lumb, J.-P.; Trauner, D. J. Am. Chem. Soc. 2005, 127, 2870.
      (d) Srivastava, V.; Negi, A. S.; Kumar, J. K.; Faridi, U.; Darokar, M. P.; Luqman, S.; Khanuja, S. P. S. Bioorg. Med. Chem. Lett. 2006, 16, 911.

    7. [7]

      Stipanovic, R. D.; Bell, A. A.; Howell, C. R. Phytochemistry 1975, 14, 1809.  doi: 10.1016/0031-9422(75)85299-X

    8. [8]

      (a) Doe, M.; Shibue, T.; Haraguchi, H.; Morimoto, Y. Org. Lett. 2005, 7, 1765.
      (b) Kapche, G. D. W. F.; Fozing, C. D.; Donfack, J. H.; Fotso, G. W.; Amadou, D.; Tchana, A. N.; Bezabih, M.; Moundipa, P. F.; Ngadjui, B. T.; Abegaz, B. M. Phytochemistry 2009, 70, 216.
      (c) Buckingham, J.; Ranjit, V.; Munasinghe, N. Dictionary of Flavonoids, Taylor and Francis Group, Boca Raton, 2015.

    9. [9]

      Chen, Y.; Wei, X.; Xie, H.; Deng, H. J. Nat. Prod. 2008, 71, 929.  doi: 10.1021/np800016e

    10. [10]

      (a) Wang, L.-Q.; Zhao, Y.-X.; Hu, J. M.; Jia, A.-Q.; Zhou, J. Helv. Chim. Acta 2008, 91, 159.
      (b) Liu, W.; Jiang, X.; Zhang, W.; Jiang, F.; Fu, L. Org. Chem. Curr. Res. 2016, 5, 1000164.

    11. [11]

      Findlay, J. A.; Buthelezi, S.; Li, G.; Seveck, M.; Miller, J. D. J. Nat. Prod. 1997, 60, 1214.  doi: 10.1021/np970222j

    12. [12]

      (a) Guo, X.; Yu, R.; Li, H.; Li, Z. J. Am. Chem. Soc. 2009, 131, 17387.
      (b) Kundu, D.; Samim, M.; Majee A.; Hajra, A. Chem.-Asian J. 2011, 6, 406.
      (c) Ackermann, L.; Kaspar, L. T. J. Org. Chem. 2007, 72, 6149.

    13. [13]

      (a) Willis, M. C.; Taylor D.; Gillmore, A. T. Org. Lett. 2004, 6, 4755.
      (b) Anderson, K. W.; Ikawa, T.; Tundel, R. E.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 10694.
      (c) Markina, N. A.; Chen Y.; Larock, R. C. Tetrahedron 2013, 69, 2701.

    14. [14]

      (a) Ichake, S. S.; Konala, A.; Kavala, V.; Kuo, C.-W.; Yao, C.-F. Org. Lett. 2017, 19, 54.
      (b) Lee, J. H.; Kim, M.; Kim, I. J. Org. Chem. 2014, 79, 6153.
      (c) Agasti, S.; Dey, A.; Maiti, D. Chem. Commun. 2017, 53, 6544.

    15. [15]

      Pei, T.; Chen, C.-Y.; DiMichele, L.; Davies, I. W. Org. Lett. 2010, 12, 4972.  doi: 10.1021/ol102123u

    16. [16]

      (a) Sharma, U.; Naveen, T.; Maji, A.; Manna, S.; Maiti, D. Angew. Chem., Int. Ed. 2013, 52, 12669.
      (b) Agasti, S.; Sharma, U.; Naveen, T.; Maiti, D. Chem. Commun. 2015, 51, 5375.

    17. [17]

      Wang, S.-H.; Li, P.-H.; Yu, L.; Wang, L. Org. Lett. 2011, 13, 5968.  doi: 10.1021/ol202383z

    18. [18]

      Liu, L.; Ji, X.; Dong, J.; Zhou, Y.; Yin, S.-F. Org. Lett. 2016, 18, 3138.  doi: 10.1021/acs.orglett.6b01352

    19. [19]

      Deight, T. A.; Rue, N. R.; Charyk, D.; Josselyn, R.; DeBoef, B. Org. Lett. 2007, 9, 3137.  doi: 10.1021/ol071308z

    20. [20]

      Theunissen, C.; Wang, J.-J.; Evano, G. Chem. Sci. 2017, 8, 3465.  doi: 10.1039/C6SC05622A

    21. [21]

      Xu, G.-Y.; Liu, K.; Sun, J.-T. Org. Lett. 2018, 20, 72.  doi: 10.1021/acs.orglett.7b03390

    22. [22]

      Gao, Y.; Xiong, W.-F.; Chen, H.-J.; Wu, W.-Q.; Peng, J.-W.; Gao, Y.-L.; Jiang, H.-F. J. Org. Chem. 2015, 80, 7456.  doi: 10.1021/acs.joc.5b01024

    23. [23]

      Torigoe, T.; Ohmura, T.; Suginome, M. Chem. Eur. J. 2016, 22, 10415.  doi: 10.1002/chem.201602152

    24. [24]

      Zhou, R.; Wang, W.; Jiang, Z.-J.; Wang, K.; Zheng, X.-L.; Fu, H.-Y.; Chen, H.; Li, R.-X. Chem. Commun. 2014, 50, 6023.  doi: 10.1039/C4CC00815D

    25. [25]

      (a) Wang, W.; Yang, Q.; Zhou, R.; Fu, H.-Y.; Chen, H.; Li, R.-X.; Li, X.-J. J. Organomet. Chem. 2012, 697, 1.
      (b) Wang, W.; Zhou, R.; Jiang, Z.-J.; Wang, K.; Fu, H.-Y.; Zheng, X.-L.; Chen, H.; Li, R.-X. Adv. Synth. Catal. 2014, 356, 616.
      (c) Wang, W.; Zhou, R.; Jiang, Z.-J.; Wang, X.; Fu, H.-Y.; Zheng, X.-L.; Chen, H.; Li, R.-X. Eur. J. Org. Chem. 2015, 2579.

    26. [26]

      (a) Larock, R. C.; Stinn, D. E. Tetrahedron Lett. 1988, 29, 4687.
      (b) Caddick, S.; Kofie, W. Tetrahedron Lett. 2002, 43, 9347.
      (c) Node, M.; Ozeki, M.; Planas, L.; Nakano, M.; Takita, H.; Mori, D.; Tamatani, S.; Kajimoto, T. J. Org. Chem. 2010, 75, 190.
      (d) Zhou, W.; An, G.-H.; Zhang, G.-Q.; Han, J.-L.; Pan, Y. Org. Biomol. Chem. 2011, 9, 5833.
      (e) Yang, H.-L.; Sun, P.; Zhu, Y.; Yan, H.; Lu, L.-H.; Liu, D.-F.; Rong, G.-W.; Mao, J.-Cheng. Catal. Commun. 2013, 38, 21.
      (f) Gu, Z.-Y.; Liu, C.-G.; Wang, S.-Y.; Ji, S.-J. Org. Lett. 2016, 18, 2379.
      (g) Adak, A. K.; Mandal, A.; Manna, S. K.; Mondal, S. K.; Ghosh, D.; Kundu, D.; Samanta, S.; Ray, J. K. Synth. Commun. 2016, 46, 452.

    27. [27]

      Cho, B. S.; Chung, Y. K. J. Org. Chem. 2017, 82, 2237.  doi: 10.1021/acs.joc.6b02864

    28. [28]

      Wang, W.; Huang, J.; Zhou, R.; Jiang, Z.-J.; Fu, H.-Y.; Zheng, X.-L.; Chen, H.; Li, R.-X. Adv. Synth. Catal. 2015, 357, 2442.  doi: 10.1002/adsc.v357.11

  • 加载中
    1. [1]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    2. [2]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    3. [3]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    4. [4]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    5. [5]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    6. [6]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    9. [9]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    10. [10]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    11. [11]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    12. [12]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    13. [13]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    14. [14]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    15. [15]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    18. [18]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    19. [19]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    20. [20]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

Metrics
  • PDF Downloads(8)
  • Abstract views(892)
  • HTML views(122)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return