Citation: Yue Huilan, Bao Pengli, Wang Leilei, Lü Xiaoxia, Yang Daoshan, Wang Hua, Wei Wei. Direct Synthesis Sulfonamides from Nitroarenes and Sulfonyl Chlorides in Water[J]. Chinese Journal of Organic Chemistry, ;2019, 39(2): 463-468. doi: 10.6023/cjoc201807033 shu

Direct Synthesis Sulfonamides from Nitroarenes and Sulfonyl Chlorides in Water

  • Corresponding author: Wei Wei, weiweiqfnu@163.com
  • Received Date: 21 July 2018
    Revised Date: 31 August 2018
    Available Online: 17 February 2018

    Fund Project: the National Natural Science Foundation of China 21302110the International Cooperation Project of Qinghai Province 2017-HZ-806Project supported by the International Cooperation Project of Qinghai Province (Nos. 2018-HZ-806, 2017-HZ-806), the Qinghai Key Laboratory of Tibetan Medicine Research (No. 2017-ZJ-Y11), the Natural Science Foundation of Shandong Province (Nos. ZR2018MB009, ZR2016JL012), and the National Natural Science Foundation of China (Nos. 21302109, 21302110, 21601106)the National Natural Science Foundation of China 21601106the Qinghai Key Laboratory of Tibetan Medicine Research 2017-ZJ-Y11the National Natural Science Foundation of China 21302109the Natural Science Foundation of Shandong Province ZR2016JL012the Natural Science Foundation of Shandong Province ZR2018MB009the International Cooperation Project of Qinghai Province 2018-HZ-806

Figures(3)

  • A simple and practical route for construction of various sulfonamides from nitroarenes and sulfonyl chlorides with iron powder as the sole reductant in water (green solvent) under open-air conditions was developed. The protocol features low-cost, environmentally benign solvent, mild reaction conditions and wide broad substrate scope.
  • 加载中
    1. [1]

      (a) Supuran Claudiu, T.; Scozzafava, A.; Casini, A. Med. Res. Rev. 2002, 23, 146.
      (b) Andrea, S.; Takashi, O.; Antonio, M.; Claudiu, T. S. Curr. Med. Chem. 2003, 10, 925.
      (c) Smith, D. A.; Jones, R. M. Curr. Opin. Drug Discovery Dev. 2008, 11, 72.
      (d) Mujumdar, P.; Poulsen, S.-A. J. Nat. Prod. 2015, 78, 1470.

    2. [2]

      (a) Zhu, H.; Shen, Y.; Deng, Q.; Tu, T. Chem. Commun. 2015, 51, 16573. (b) Mokhtari, B.; Nematollahi, D.; Salehzadeh, H. Green Chem. 2018, 20, 1499.

    3. [3]

      (a) Deng, X.; Mani, N. S. Green Chem. 2006, 8, 835.
      (b) Bahrami, K.; Khodaei, M. M.; Soheilizad, M. J. Org. Chem. 2009, 74, 9287.
      (c) Powell, D. A.; Fan, H. J. Org. Chem. 2010, 75, 2726.
      (d) Mokhtar, M.; Saleh, T. S.; Ahmed, N. S.; Al-Thabaiti, S. A.; Al-Shareef, R. A. Ultrason. Sonochem. 2011, 18, 172.
      (e) Zhao, J.; Xu, J.; Chen, J.; Wang, X.; He, M. RSC Adv. 2014, 4, 64698.
      (f) Pan, X.; Gao, J.; Liu, J.; Lai, J.; Jiang, H.; Yuan, G. Green Chem. 2015, 17, 1400.
      (g) Yang, K.; Ke, M.; Lin, Y.; Song, Q. Green Chem. 2015, 17, 1395.
      (h) Wei, W.; Liu, C.; Yang, D.; Wen, J.; You, J.; Wang, H. Adv. Synth. Catal. 2015, 357, 987.
      (i) Jiang, Y.-y.; Wang, Q.-Q.; Liang, S.; Hu, L.-M.; Little, R. D.; Zeng, C.-C. J. Org. Chem. 2016, 81, 4713.
      (j) Zhu, M.; Wei, W.; Yang, D.; Cui, H.; Wang, L.; Meng, G.; Wang, H. Org. Biomol. Chem. 2017, 15, 4789.
      (k) Sheykhan, M.; Khani, S.; Abbasnia, M.; Shaabanzadeh, S.; Joafshan, M. Green Chem. 2017, 19, 5940.
      (l) Yu, H.; Zhang, Y. Chin. J. Chem. 2016, 34, 359.
      (m) Zhao Y.; Ren X.; Liu H.; Tang Z. Chin. J. Org. Chem. 2014, 34, 1218.
      (n) Wei M.; Gao X.; Zhang H.; Li X. Chin. J. Org. Chem. 2015, 35, 439.

    4. [4]

      Zhang, W.; Xie, J.; Rao, B.; Luo, M. J. Org. Chem. 2015, 80, 3504.  doi: 10.1021/acs.joc.5b00130

    5. [5]

      Zhao, F.; Li, B.; Huang, H.; Deng, G.-J. RSC Adv. 2016, 6, 13010.  doi: 10.1039/C5RA26588F

    6. [6]

      Du, B.; Qian, P.; Wang, Y.; Mei, H.; Han, J.; Pan, Y. Org. Lett. 2016, 18, 4144.  doi: 10.1021/acs.orglett.6b02289

    7. [7]

      Sheykhan, M.; Khani, S.; Abbasnia, M.; Shaabanzadeh, S.; Joafshan, M. Green Chem. 2017, 19, 5940.  doi: 10.1039/C7GC03141F

    8. [8]

      (a) Tang, L.; Yang, Y.; Wen, L.; Yang, X.; Wang, Z. Green Chem. 2016, 18, 1224.
      (b) Wei, W.; Wen, J.; Yang, D.; Liu, X.; Guo, M.; Dong, R.; Wang, H. J. Org. Chem. 2014, 79, 4225.
      (c) Lu, G.-p.; Cai, C.; Chen, F.; Ye, R.-l.; Zhou, B.-J. ACS Sustainable Chem. Eng. 2016, 4, 1804.
      (d) Wei, W.; Wen, J.; Yang, D.; Du, J.; You, J.; Wang, H. Green Chem. 2014, 16, 2988.
      (e) Wen, J.; Wei, W.; Xue, S.; Yang, D.; Lou, Y.; Gao, C.; Wang, H. J. Org. Chem. 2015, 80, 4966.
      (f) Uday Kumar, R.; Reddy, K. H. V.; Anil Kumar, B. S. P.; Satish, G.; Reddy, V. P.; Nageswar, Y. V. D. Tetrahedron Lett. 2016, 57, 637.
      (g) Li, Y.; Huang, Y.; Gui, Y.; Sun, J.; Li, J.; Zha, Z.; Wang, Z. Org. Lett. 2017, 19, 6416.
      (h) Chen, D.; Feng, Q.; Yang, Y.; Cai, X.-M.; Wang, F.; Huang, S. Chem. Sci. 2017, 8, 1601.
      (i) Wei, W.; Cui, H.; Yang, D.; Yue, H.; He, C.; Zhang, Y.; Wang, H. Green Chem. 2017, 19, 5608.
      (j) Kong, D.-L.; Lu, G.-P.; Wu, M.-S.; Shi, Z.-F.; Lin, Q. ACS Sustainable Chem. Eng. 2017, 5, 3465.
      (k) Wei, W.; Bagzo, P.; Yue, H.; Liu, S.; Wang, L.; Li Y.; Yang, D. Org. Lett. 2018, 20, 7125.

    9. [9]

      (a) Wu, C.; Yang, P.; Fu, Z.; Peng, Y.; Wang, X.; Zhang, Z.; Liu, F.; Li, W.; Li, Z.; He, W. J. Org. Chem. 2016, 81, 10664.
      (b) Liu, W.; Wang, H.; Li, C.-J. Org. Lett. 2016, 18, 2184.
      (c) Deng, T.; Wang, C.-Z. Catal. Sci. Technol. 2016, 6, 7029.
      (d) Cui, H.; Wei, W.; Yang, D.; Zhang, J. Xu, Z.; Wen, J.; Wang, H. RSC Adv. 2015, 5, 84657.
      (e) Li, W.; Yin, G.; Huang, L.; Xiao, Y.; Fu, Z.; Xin, X.; Liu, F.; Li, Z.; He, W. Green Chem. 2016, 18, 4879.
      (f) Wu, C.; Xin, X.; Fu, Z.-M.; Xie, L.-Y.; Liu, K.-J.; Wang, Z.; Li, W.; Yuan, Z.-H.; He, W.-M. Green Chem. 2017, 19, 1983.
      (g) Hou, S.; Yang, H.; Cheng, B.; Zhai, H.; Li, Y. Chem. Commun. 2017, 53, 6926.
      (h) Xie, L.-Y.; Duan, Y.; Lu, L.-H.; Li, Y.-J.; Peng, S.; Wu, C.; Liu, K.-J.; Wang, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2017, 5, 10407.
      (i) Wu, C.; Lu, L.-H.; Peng, A.-Z.; Jia, G.-K.; Peng, C.; Cao, Z.; Tang, Z.; He, W.-M.; Xu, X. Green Chem. 2018, 20, 3683.
      (j) Luo, F.; Long, Y.; Li, Z.; Zhou, X. Acta Chim. Sinica 2016, 74, 805.
      (k) Wu, J.; Liu, Y.; Ma, X.; Liu, P.; Gu, C.; Dai, B. Chin. J. Chem. 2017, 35, 1391.
      (l) Zhou, Z.; Duan, J.; Mu, X.; Xiao, S. Chin. J. Org. Chem. 2018, 38, 585(in Chinese). (周曌, 段建凤, 穆小静, 肖尚友, 有机化学, 2018, 38, 585. 

    10. [10]

      (a) Wei, W.; Liu, C.; Yang, D.; Wen, J.; You, J.; Suo, Y.; Wang, H. Chem. Commun. 2013, 49, 10239.
      (b) Wei, W.; Liu, X.; Yang, D.; Dong, R.; Cui, Y.; Yuan F.; Wang, H. Tetrahedron Lett. 2015, 56, 1808.
      (c) Cui, H.; Liu, X.; Wei, W.; Yang, D.; He, C.; Zhang, T.; Wang, H. J. Org. Chem. 2016, 81, 2252.
      (d) Liu, X.; Cui, H.; Yang, D.; Dai, S.; Zhang, T.; Sun, J.; Wei, W.; Wang, H. RSC Adv. 2016, 6, 51830.
      (e) Liu, C.; Zhu, M.; Wei, W.; Yang, D.; Cui, H.; Liu, X.; Wang, H. Org. Chem. Front. 2015, 2, 1356.
      (f) Yi, D.; Fu, Q.; Chen, S. Y.; Gao, M.; Yang, L.; Zhang, Z. J.; Liang, W.; Zhang, Q.; Ji, J. X.; Wei, W. Tetrahedron Lett. 2017, 58, 2058.
      (g) Fu, Q.; Yi, D.; Zhang, Z. J.; Liang, W.; Chen, S. Y.; Yang, L.; Zhang, Q.; Ji, J. X.; Wei, W. Org. Chem. Front. 2017, 4, 1385.
      (h) Liang, W.; Zhang, Q.; Yi, D.; Fu, Q.; Chen, S. Y.; Yang, L.; Du, F. T.; Ji, J. X.; Wei, W. Chin. J. Chem. 2017, 35, 1378.
      (i) Zhang, Z. J.; Yi, D.; Fu, Q.; Liang, W.; Chen, S. Y.; Yang, L.; Du, F. T.; Ji, J. X.; Wei, W. Tetrahedron Lett. 2017, 58, 2417.
      (j) Wang, L.; Yue, H.; Yang, D.; Cui, H.; Zhu, M.; Wang, J.; Wei, W.; Wang, H. J. Org. Chem. 2017, 82, 6857.
      (k) Wei, W.; Cui, H.; Yang, D.; Liu, X.; He, C.; Dai, S.; Wang, H. Org. Chem. Front. 2017, 4, 26.
      (l) Wei, W.; Cui, H.; Yue, H.; Yang, D. Green Chem. 2018, 20, 3197.
      (m) Cui, H.; Wei, W.; Yang, D.; Zhang, Y.; Zhao, H.; Wang, L.; Wang, H. Green Chem. 2017, 19, 3520.

    11. [11]

      Chumachenko, N.; Sampson, P. Tetrahedron 2006, 62, 4540. Xie, L.-Y.; Li, Y.-J.; Qu, J.; Duan, Y.; Hu, J.; Liu, K.-J.; Cao, Z.; He, W.-M. Green Chem. 2017, 19, 5642.

  • 加载中
    1. [1]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    2. [2]

      Qiao SongXue PengZhouyu WangLeyong Wang . Iron-catalyzed C–H activation: A sustainable approach to efficient organic synthesis. Chinese Chemical Letters, 2025, 36(5): 110869-. doi: 10.1016/j.cclet.2025.110869

    3. [3]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    4. [4]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    5. [5]

      Zhongsen WangLijun QiuYunhua HuangMeng ZhangXi CaiFanyu WangYang LinYanbiao ShiXiao Liu . Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal. Chinese Chemical Letters, 2024, 35(7): 109195-. doi: 10.1016/j.cclet.2023.109195

    6. [6]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    7. [7]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    8. [8]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    9. [9]

      Haoting WangMengfan LuoYuzhong WangJialong YinHeng ZhangJia ZhaoBo Lai . Mn(Ⅱ) enhanced permanganate oxidation of trace organic pollutants in water: Critical role of in situ formation of colloidal MnO2. Chinese Chemical Letters, 2025, 36(6): 110348-. doi: 10.1016/j.cclet.2024.110348

    10. [10]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

    11. [11]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    12. [12]

      Tengteng WangYiming JuYao ChengHaiyang WangDejin Zang . Recent advances in polyoxometalates based strategies for green synthesis of drugs. Chinese Chemical Letters, 2025, 36(5): 109871-. doi: 10.1016/j.cclet.2024.109871

    13. [13]

      Qiang FengJindong HaoYa HuRong FuWei WeiDong Yi . Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor. Chinese Chemical Letters, 2025, 36(6): 110582-. doi: 10.1016/j.cclet.2024.110582

    14. [14]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    15. [15]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    16. [16]

      Shuai Liu Wen Wu Peili Zhang Yunxuan Ding Chang Liu Yu Shan Ke Fan Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535

    17. [17]

      Zhen ZhangXue-ling ChenXiu-Mei XieTian-Yu GaoJing QinJun-Jie LiChao FengDa-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056

    18. [18]

      Yunlong LiXinyu ZhangShuang LiuChunsheng LiQiang WangJin YeYong LuJiating Xu . Engineered iron-based metal-organic frameworks nanoplatforms for cancer theranostics: A mini review. Chinese Chemical Letters, 2025, 36(2): 110501-. doi: 10.1016/j.cclet.2024.110501

    19. [19]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    20. [20]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

Metrics
  • PDF Downloads(8)
  • Abstract views(931)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return