Citation: Wang Xiaofen, Wei Chao, Li Xueyan, Zheng Xueyang, Geng Xiaowei, Zhang Pingzhu, Li Xiaoliu. Lysosome-Targeted Dual-Photon Nitroxyl Fluorescent Probe: Synthesis and Application in Living Cell Imaging[J]. Chinese Journal of Organic Chemistry, ;2019, 39(2): 469-474. doi: 10.6023/cjoc201807032 shu

Lysosome-Targeted Dual-Photon Nitroxyl Fluorescent Probe: Synthesis and Application in Living Cell Imaging

  • Corresponding author: Wei Chao, weichao@hbu.edu.cn Li Xiaoliu, lixl@hbu.edu.cn
  • Received Date: 20 July 2018
    Revised Date: 27 August 2018
    Available Online: 17 February 2018

    Fund Project: the Natural Science Foundation of Hebei Provience 2018201234the Science Technology Research and Development Guidance Program Project of Baoding City 16zg031the Colleges and Universities Science Technology Research Project of Hebei Province QN2017015Project supported by the National Natural Science Foundation of China (Nos. 21572044, 21778013), the Natural Science Foundation of Hebei Provience (Nos. B2016201031, 2018201234), the Colleges and Universities Science Technology Research Project of Hebei Province (No. QN2017015) and the Science Technology Research and Development Guidance Program Project of Baoding City (No. 16zg031)the National Natural Science Foundation of China 21778013the National Natural Science Foundation of China 21572044the Natural Science Foundation of Hebei Provience B2016201031

Figures(8)

  • Nitroxyl (HNO), which is the one-electron reduced and further protonated form of nitric oxide, plays important biological functions. A lysosome-targeted dual-photon HNO fluorescent probe (Lyso-HNO), which contains 4-(2-amino-ethyl)morpholine as lysosomal-targetable groups, 1, 8-naphthalimide as two-photon fluorophore and triphenylphosphine as HNO reaction site, was synthesized and characterized. The recognition behaviors of Lyso-HNO to HNO were investigated. The results showed that Lyso-HNO exhibited good selectivity and sensitivity to HNO with fast response, . and the detection limit of Lyso-HNO to HNO was estimated to be 202 nmol·L-1. The probe can be applied to bioimaging exogenous lysosomal HNO by two-photon fluorescence confocal microscopy.
  • 加载中
    1. [1]

      Paolocci, N.; Jackson, M. I.; Lopez, B. E.; Miranda, K.; Toc-chetti, C. G.; Wink, D. A.; Hobbs, A. J.; Fukuto, J. M. Pharmacol. Therapeut. 2007, 113, 442.  doi: 10.1016/j.pharmthera.2006.11.002

    2. [2]

      Irvine, J. C.; Ritchie, R. H.; Favaloro, J. L.; Andrews, K. L.; Widdop, R. E.; Kemp-Harper, B. K. Trends Pharmacol. Sci. 2008, 29, 601.  doi: 10.1016/j.tips.2008.08.005

    3. [3]

      Flores-Santana, W.; Salmon, D. J.; Donzelli, S.; Switzer, C. H.; Basudhar, D.; Ridnour, L.; Cheng, R.; Glynn, S. A.; Paolocci, N.; Fukuto, J. M.; Miranda, K. M.; Wink, D. A. Antioxid. Redox Sign. 2011, 14, 1659.  doi: 10.1089/ars.2010.3841

    4. [4]

      Paolocci, N.; F. Saavedra, W.; Miranda, K.; Martignani, C.; Isoda, T.; M. Hare, J.; G. Espey, M.; M. Fukuto, J.; Feelisch, M.; Wink, D.; Kass, D. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 10463.  doi: 10.1073/pnas.181191198

    5. [5]

      Switzer, C. H.; Flores-Santana, W.; Mancardi, D.; Donzelli, S.; Basudhar, D.; Ridnour, L. A.; Miranda, K. M.; Fukuto, J. M.; Paolocci, N.; Wink, D. A. Biochim. Biophys. Acta, Bioenerg. 2009, 1787, 835.  doi: 10.1016/j.bbabio.2009.04.015

    6. [6]

      Bult, H.; Boeckxstaens, G. E.; Pelckmans, P. A.; Jorfaens, F. H.; Van Maercke, Y. M.; Herman, A. G. Nature 1990, 345, 346.  doi: 10.1038/345346a0

    7. [7]

      Irvine, J. C.; Kemp-Harper, B. K.; Widdop, R. E. Hypertension 2007, 49, 1468.

    8. [8]

      Lee, M. J. C.; Nagasawa, H. T.; Elberling, J. A.; Demaster, E. G. J. Med. Chem. 1992, 35, 3648.  doi: 10.1021/jm00098a008

    9. [9]

      Li, M.; Wang, Y.; Liu, G.; Lv, H.; Xing, G. Chin. J. Org. Chem. 2017, 37, 356(in Chinese).
       

    10. [10]

      Da Silva, T. R. M.; De Freitas, J. R.; Silva, Q. C.; Figueira, C. P.; Roxo, E.; Leao, S. C.; De Freitas, L. A. R.; Veras, P. S. T. Infect. Immun. 2002, 70, 5628.  doi: 10.1128/IAI.70.10.5628-5634.2002

    11. [11]

      Radi, R. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 4003.  doi: 10.1073/pnas.0307446101

    12. [12]

      Dong, B.; Kong, X.; Lin, W. ACS Chem. Biol. 2018, 13, 1714.  doi: 10.1021/acschembio.7b00901

    13. [13]

      Jing, X.; Yu, F.; Chen, L. Prog. Chem. 2014, 26, 866(in Chi-nese).

    14. [14]

      Apfel, U.-P.; Buccella, D.; Wilson, J. J.; Lippard, S. J. Inorg. Chem. 2013, 52, 3285.  doi: 10.1021/ic302793w

    15. [15]

      Lv, H.; Ma, R.; Zhang, X.; Li, M.; Wang, Y.; Wang, S.; Xing, G. Tetrahedron 2016, 72, 5495.  doi: 10.1016/j.tet.2016.07.039

    16. [16]

      R., C. M.; P., T. J. J. Phys. Org. Chem. 2011, 24, 993.  doi: 10.1002/poc.1871

    17. [17]

      Kawai, K.; Ieda, N.; Aizawa, K.; Suzuki, T.; Miyata, N.; Nakagawa, H. J. Am. Chem. Soc. 2013, 135, 12690.  doi: 10.1021/ja404757s

    18. [18]

      Liu, C.; Wu, H.; Wang, Z.; Shao, C.; Zhu, B.; Zhang, X. Chem. Commun. 2014, 50, 6013.  doi: 10.1039/c4cc00980k

    19. [19]

      Tan, Y.; Liu, R.; Zhang, H.; Peltier, R.; Lam, Y.; Zhu, Q.; Hu, Y.; Sun, H. Sci. Rep. 2015, 5. 16979.  doi: 10.1038/srep16979

    20. [20]

      Gong, X.; Yang, X.; Zhong, Y.; Chen, Y.; Li, Z. Dyes Pigm. 2016, 131, 24.  doi: 10.1016/j.dyepig.2016.03.046

    21. [21]

      Jin, X.; Sun, X.; Di, X.; Zhang, X.; Huang, H.; Liu, J.; Ji, P.; Zhu, H. Sens. Actuators, B 2016, 224, 209.  doi: 10.1016/j.snb.2015.09.072

    22. [22]

      Ali, F.; Sreedharan, S.; Ashoka, A. H.; Saeed, H. K.; Smythe, C. G. W.; Thomas, J. A.; Das, A. Anal. Chem. 2017, 89, 12087.  doi: 10.1021/acs.analchem.7b02567

    23. [23]

      Zhou, Y.; Zhang, X.; Yang, S.; Li, Y.; Qing, Z.; Zheng, J.; Li, J.; Yang, R. Anal. Chem. 2017, 89, 4587.  doi: 10.1021/acs.analchem.7b00073

    24. [24]

      Li, H.; Yao, Q.; Xu, F.; Xu, N.; Ma, X.; Fan, J.; Long, S.; Du, J.; Wang, J.; Peng, X. Anal. Chem. 2018, 90, 4641.  doi: 10.1021/acs.analchem.7b05172

    25. [25]

      Yuan, S.; Wang, F.; Yang, G.; Lu, C.; Nie, J.; Chen, Z.; Ren, J.; Qiu, Y.; Sun, Q.; Zhao, C.; Zhu, W. H. Anal. Chem. 2018, 90, 3914.  doi: 10.1021/acs.analchem.7b04787

    26. [26]

      Jing, X.; Yu, F.; Chen, L. Chem. Commun. 2014, 50, 14253.  doi: 10.1039/C4CC07561G

    27. [27]

      Zhang, B. B.; Yang, X. P.; Zhang, R.; Liu, Y.; Ren, X. L.; Xian, M.; Ye, Y.; Zhao, Y. F. Anal. Chem. 2017, 89, 10384.  doi: 10.1021/acs.analchem.7b02361

    28. [28]

      Zheng, K.; Lin, W.; Cheng, D.; Chen, H.; Liu, Y.; Liu, K. Chem. Commun. 2015, 51, 5754.  doi: 10.1039/C4CC10382C

    29. [29]

      Zhu, X.; Xiong, M.; Liu, H.; Mao, G.; Zhou, L.; Zhang, J.; Hu, X.; Zhang, X.; Tan, W. Chem. Commun. 2016, 52, 733.  doi: 10.1039/C5CC08695G

    30. [30]

      Dong, B.; Song, X.; Kong, X.; Wang, C.; Zhang, N.; Lin, W. J. Mater. Chem. B 2017, 5, 5218.  doi: 10.1039/C7TB00703E

    31. [31]

      Fernández-Alonso, S.; Corrales, T.; Pablos, J. L.; Catalina, F. Sens. Actuators, B 2018, 270, 256.  doi: 10.1016/j.snb.2018.05.030

    32. [32]

      Tang, J.; Ma, S. G.; Zhang, D.; Liu, Y. Q.; Zhao, Y. F.; Ye, Y. Sens. Actuators, B 2016, 236, 109.  doi: 10.1016/j.snb.2016.05.144

    33. [33]

      Gupta, N.; Kaur, T.; Bhalla, V.; Parihar, R. D.; Ohri, P.; Kaur, G.; Kumar, M. Chem. Commun. 2017, 53, 12646.  doi: 10.1039/C7CC07996F

    34. [34]

      Zhang, B. B.; Qin, F. Y.; Niu, H. W.; Liu, Y.; Zhang, D.; Ye, Y. New J. Chem. 2017, 41, 14683.  doi: 10.1039/C7NJ02813J

    35. [35]

      Xie, Z.; Fu, M.; Yin, B.; Zhu, Q. Chin. J. Org. Chem. 2018, 38, 1364(in Chinese).
       

    36. [36]

      Wang, Y.; Liu, C.; Yang, W.; Zou, G.; Zhang, X.; Wu, F.; Yu, S.; Luo, X.; Zhou, X. Chem. Commun. 2018, 54, 1497.  doi: 10.1039/C7CC08715B

    37. [37]

      Liu, C.; Wang, Y.; Zhang, X.; Wu, F.; Yang, W.; Zou, G.; Yao, Q.; Wang, J.; Chen, Y.; Wang, S.; Zhou, X. Chem. Sci. 2017, 8, 4505.  doi: 10.1039/C7SC00637C

    38. [38]

      Christensen, K.; Myers, J.; Swanson, J. Cell Sci. 2002, 115, 599.

    39. [39]

      Michael, S.; Raoul, K.; Michael, K.; Brian, H. Anal. Chem. 1996, 65, 1414.
       

  • 加载中
    1. [1]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    2. [2]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    3. [3]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    6. [6]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    11. [11]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    12. [12]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    13. [13]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    14. [14]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    15. [15]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    16. [16]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    17. [17]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    18. [18]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    19. [19]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    20. [20]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

Metrics
  • PDF Downloads(11)
  • Abstract views(1055)
  • HTML views(207)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return