Citation: Yi Xiangyan, Zhang Zhipeng, Huang He, Baell Jonathan B., Yu Yang, Huang Fei. Microwave-Assisted Synthesis of α-Diazoesters[J]. Chinese Journal of Organic Chemistry, ;2019, 39(2): 544-549. doi: 10.6023/cjoc201807031 shu

Microwave-Assisted Synthesis of α-Diazoesters

  • Corresponding author: Yu Yang, yuyang19880421@yeah.net Huang Fei, huangfei0208@yeah.net
  • Received Date: 20 July 2018
    Revised Date: 7 September 2018
    Available Online: 26 February 2018

    Fund Project: the Jiangsu Synergetic Innovation Center for Advanced Bio-manufacture XTC1810Project supported by the Jiangsu Synergetic Innovation Center for Advanced Bio-manufacture (Nos. XTE1850, XTC1810) and the Program for Innovative Research Team in Universities of Jiangsu Province (2015)the Jiangsu Synergetic Innovation Center for Advanced Bio-manufacture XTE1850the Program for Innovative Research Team in Universities of Jiangsu Province 2015

Figures(4)

  • Shorter reaction times, higher product yields and enhanced selectivity are some of the outstanding advantages over conventional methods that the microwave-assisted organic synthesis possesses, which makes this methods develop into a significant mainstream both in industrial usages and academic researches. Microwave-assisted organic synthesis as a new protocol for green chemistry showcases the application of microwave heating in a number of areas of preparative chemistry as well as in the biosciences. Many name reactions can be performed by microwave-assisted, including the Diels-Alder reaction, the Witting reaction, the Heck reaction and the Mannich reaction. Meanwhile, α-diazoester was already a mature science 20 years ago, some areas that continue to attract the most attention are preparation of diazoester substrates, such as the Wolff rearrangement, C-H insertion, N-H insertion, Si-H insertion and so on. Therefore, it is necessary to develop a green and efficient method for the preparation of α-diazoester. Herein a new method of microwave-assisted synthesis of α-diazoesters compounds from 2-phenylacetates and tosyl azide in 30 min is described. The protocol provides a quick, efficient and green approach to various α-diazoesters compounds with up to 90% isolated yields and a broad range of functional groups.
  • 加载中
    1. [1]

    2. [2]

      (a) Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250.
      (b) Caddick, S. Tetrahedron Lett. 1995, 51, 10403.
      (c) Pelle, L.; Jason, T.; Bernard, W.; Jacob, W. Tetrahedron 2001, 57, 9225.
      (d) Enquist, P. A.; Nilsson, P.; Larhed, M. Org. Lett. 2003, 5, 4875.
      (e) Sandoval, W.; Pham, V. J. Drug Discovery Today 2008, 13, 1075.
      (f) Appukkuttan, P.; Erik, V. D. E. Eur. J. Org. Chem. 2008, 7, 1133.
      (g) Schmink, J. R.; Kormos, C. M.; Devine, W. G.; Leadbeater, N. E. Org. Process Res. Dev. 2010, 14, 205.
      (h) Rodríguez, A. M.; Prieto, P.; De La Hoz, A.; Á ngel DíazOrtiz; Martín, D. R.; García, J. I. ChemistryOpen 2015, 4, 308.
      (i) Frecentese, F.; Saccone, I.; Caliendo, G.; Corvino, A.; Fiorino, F.; Magli, E.; Perissutti, E.; Severino, B.; Santagada, V. Med. Chem. 2016, 12, 720.
      (j) Lin, W.; Zheng, Y. X.; Xun, Z.; Huang, Z. B.; Shi, D. Q. ACS Comb. Sci. 2017, 19, 708.
      (k) Kumar, A.; Jad, Y. E.; Collins, J. M.; Albericio, F.; De la Torre, B. G. ACS Sustainable Chem. Eng. 2018, 6, 8034.
      (l) Rieger, E.; Gleede, T.; Manhart, A.; Lamla, M.; Wurm, F. R. ACS Macro Lett. 2018, 7, 598.
      (m) Verrier, C.; Carret, S.; Poisson, J. F. ACS Sustainable Chem. Eng. 2018, 6, 8563.
      (n) Lin, J.; Wang, Y. L.; Zhang, J. H.; Yang, J. S.; Mou, H. C.; Lin, J.; Yan, S. J. ACS Omega 2018, 3, 4534.

    3. [3]

      Gedye, R.; Smith, F.; Westaway, K. Tetrahedron Lett. 1986, 27, 279.  doi: 10.1016/S0040-4039(00)83996-9

    4. [4]

      Zhao, K. Y.; Xu, F. Y. The Principle and Technology of Microwave, Higher Education Press, Beijing, 2006 (in Chinese).

    5. [5]

      Fan, X.; You, X.; Tan, G.; Yu, X.; Jiao, T. Prog. Chem. 1998, 10, 285 (in Chinese).  doi: 10.3321/j.issn:1005-281X.1998.03.006

    6. [6]

      (a) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; Mckervey, M. A. Chem. Rev. 2015, 115, 9981.
      (b) Orihara, K.; Kawagishi, F.; Yokoshima, S.; Fukuyama, T. Synlett 2018, 29, 769.
      (c) Deepa, N.; Prashant, P.; Savita, K.; Irishi, N. N. N. Tetrahedron Lett. 2016, 57, 3146.
      (d) Rajasekaran, T.; Sridhar, B.; Reddy, B. V. S. Tetrahedron 2016, 72, 2102.

    7. [7]

      (a) Ovalles, S. R.; Hansen, J. H.; Davies, H, M. Org. Lett. 2011, 13, 4284.
      (b) Lebel, H.; Marcoux, J. F.; Molinaro, C.; Charette, A, B. Chem. Rev. 2003, 4, 977.
      (c) Nicolas, I.; Maux, P. L.; Simonneaux, G. Coord. Chem. Rev. 2008, 252, 727.
      (e) Chen, D. Y.; Pouwer, R. H.; Richard, J. A. Chem. Soc. Rev. 2012, 41, 4631.
      (f) Reisman, S. E.; Nani, R. R.; Levin, S. Synlett 2011, 2437.
      (g) Davies, H. M.; Morton, D. Chem. Soc. Rev. 2011, 40, 1857.
      (h) Xia, Y.; Liu, Z.; Liu, Z.; Ge, R.; Ye, F.; Hossain, M.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2014, 136, 3031.
      (i) Larsen, S. D.; Barf, T.; Liljebris, C.; May, P. D.; Ogg, D.; O'Sullivan, T. J.; Palazuk, B. J.; Schostarez, H. J.; Stevens, C. F.; Bleasdale, E. J. J. Med. Chem. 2002, 45, 598.
      (j) Lepage, R. J.; White, J. M.; Coster, M. J. Chem. Commun. 2017, 53, 4219.
      (k) Huang, B.; Shen, Y.; Mao, Z.; Liu, Y.; Cui, S. Org. Lett. 2016. 18, 4888.
      (l) Popp, B. V.; Ball, Z. T. J. Am. Chem. Soc. 2010, 132, 6660.

    8. [8]

      Bartrum, H. E.; Blakemore, D. C.; Moody, C. J.; Hayes, C. J. Chem.-Eur. J. 2011, 17, 9586.  doi: 10.1002/chem.v17.35

    9. [9]

      Keipour, H.; Jalba, A.; Delage-Laurin, L.; Ollevier, T. J. Org. Chem. 2017, 82, 3000.  doi: 10.1021/acs.joc.6b02998

    10. [10]

      Nicolle, S. M.; Hayes, C. J.; Moody, C. J. Chemistry 2015, 21, 4576.  doi: 10.1002/chem.201500118

    11. [11]

      Hazeldine, S. T.; Polin, L.; Kushner, J.; White, K.; Corbett, T. H.; Horwitz, J. P. Bioorg. Med. Chem. 2005, 13, 3910.  doi: 10.1016/j.bmc.2005.04.011

    12. [12]

      (a) Danheiser, R. L.; Miller, R. F.; Brisbois, R. G.; Park, S. Z. J. Org. Chem. 1990, 55, 1959.
      (b) Abad, A.; Agulló, C.; Cuñat, A. C.; de Alfonso Marzal, I.; Navarro, I.; Gris, A. Tetrahedron 2006, 62, 3266.
      (c) Arthuis, M.; Beaud, R.; Gandon, V.; Roulland, E. Angew. Chem., Int. Ed. 2012, 51, 10510.
      (d) Shibuya, G. M.; Enquist, J. A.; Stoltz, B. M. Org. Lett. 2013, 15, 3480.

    13. [13]

      Starmans, W. A. J.; Thijs, L.; Zwanenburg, B. Tetrahedron 1998, 54, 629.  doi: 10.1016/S0040-4020(97)10322-2

    14. [14]

      Maier, T. C.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 4594.  doi: 10.1021/ja0607739

    15. [15]

      Davies, H. M. L.; Hansen, T.; Churchill, M. R. J. Am. Chem. Soc. 2000, 122, 3063.  doi: 10.1021/ja994136c

    16. [16]

      Ye, F.; Wang, C.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2014, 53, 11625.  doi: 10.1002/anie.201407653

    17. [17]

      Chen, G.; Song, J.; Yu, Y.; Luo, X.; Li, C.; Huang, X. Chem. Sci. 2016, 7, 1786.  doi: 10.1039/C5SC04237B

    18. [18]

      Jason, T.; Richard, T.; Graham K. M. J. Am. Chem. Soc. 2013, 135, 16312.  doi: 10.1021/ja408678p

    19. [19]

      Bachmann, S.; Fielenbach, D.; Jørgensen, K. A. Org. Biomol. Chem. 2004, 2, 3044.  doi: 10.1039/B412053A

    20. [20]

      Luo, X.; Chen, G.; He, L.; Huang, X. J. Org. Chem. 2016, 81, 2943.  doi: 10.1021/acs.joc.6b00233

    21. [21]

      Tayama, E.; Yanaki, T.; Iwamoto, H.; Hasegawa, E. Eur. J. Org. Chem. 2010, 2010, 6719.  doi: 10.1002/ejoc.v2010.35

    22. [22]

      Davies, J. R.; Kane, P. D.; Moody, C. J. Tetrahedron 2004, 60, 3967.  doi: 10.1016/j.tet.2004.03.037

    23. [23]

      Li, W.; Liu, X.; Hao, X.; Hu, X.; Chu, Y.; Cao, W.; Qin, S.; Hu, C.; Lin, L.; Feng, X. J. Am. Chem. Soc. 2011, 133, 15268.  doi: 10.1021/ja2056159

    24. [24]

      Taber, D. F.; Sheth, R. B.; Joshi, P. V. J. Org. Chem. 2005, 70, 2851.  doi: 10.1021/jo048011o

    25. [25]

      Wang, Y.; Zhu, Y.; Chen, Z.; Mi, A.; Hu, W.; Doyle, M. P. Org. Lett. 2003, 5, 3923.  doi: 10.1021/ol035490p

    26. [26]

      Zeineddine, A.; Rekhroukh, F.; Sosa Carrizo, E. D.; Mallet-Ladeira, S.; Miqueu, K.; Amgoune, A.; Bourissou, D. Angew. Chem., Int. Ed. 20018, 57, 1306.

  • 加载中
    1. [1]

      Yifan Liu Haonan Peng . AI-Assisted New Era in Chemistry: A Review of the Application and Development of Artificial Intelligence in Chemistry. University Chemistry, 2025, 40(7): 189-199. doi: 10.12461/PKU.DXHX202405182

    2. [2]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    3. [3]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    4. [4]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    5. [5]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    6. [6]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    7. [7]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    8. [8]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    9. [9]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    10. [10]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    11. [11]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    12. [12]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    13. [13]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    14. [14]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    15. [15]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    16. [16]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

    17. [17]

      Ruiyuan Xu Yuxin Wang Yuru Zhang Wanmei Li . Who Destroyed Snowflake Castle. University Chemistry, 2024, 39(9): 224-228. doi: 10.12461/PKU.DXHX202311056

    18. [18]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    19. [19]

      Liuxie Liu Jing He Jiali Du Shuang Mao Qianggen Li . Extension of Computational Chemical-Assisted Dipole Moment Measurement Experiment. University Chemistry, 2025, 40(3): 363-370. doi: 10.12461/PKU.DXHX202407108

    20. [20]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

Metrics
  • PDF Downloads(5)
  • Abstract views(1035)
  • HTML views(105)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return