Citation: Geng Dianguo. Recent Advances on Transition-Metal-Catalyzed Allenamides Cyclization[J]. Chinese Journal of Organic Chemistry, ;2019, 39(2): 301-317. doi: 10.6023/cjoc201807028 shu

Recent Advances on Transition-Metal-Catalyzed Allenamides Cyclization

  • Corresponding author: Geng Dianguo, gengdianguo@126.com
  • Received Date: 17 July 2018
    Revised Date: 6 September 2018
    Available Online: 26 February 2018

Figures(49)

  • With the especial reactivity, selectivity, availability and stability, the allenamides have got more and more attention, and the reports on allenamides cyclization grow rapidly. This review gives an up-to-date overview of transition-metal-catalyzed allenamides cyclization, which are sorted by metal catalysts in eight categories of Pd, Ru, Rh, Au, Co, Ag, Pt and Ni. For most of these transformations, the plausible mechanisms are demonstrated in details. Clarification of these issues is the key point for understanding the transition-metal-catalyzed allenamides cyclization and developing new high performance methodologies for chemists.
  • 加载中
    1. [1]

    2. [2]

      Grigg, R. Sridharan, V. Xu, L.-H. J. Chem. Soc., Chem. Commun. 1995, 1903.

    3. [3]

      Grigg, R.; Köppen, I.; Rasparini, M.; Sridharan, V. Chem. Commun. 2001, 96.

    4. [4]

      Grigg, R.; McCaffrey, S.; Sridharan, V.; Fishwick, C. W. G.; Kilner, C.; Korn, S.; Bailey, K.; Blacker, J. Tetrahedron 2006, 62, 12159.  doi: 10.1016/j.tet.2006.09.098

    5. [5]

      Inamoto, K.; Yamamoto, A.; Ohsawa, K.; Hiroya, K.; Sakamoto, T. Chem. Pharm. Bull. 2005, 53, 1502.  doi: 10.1248/cpb.53.1502

    6. [6]

      Husinec, S.; Petkovic, M.; Savic, V.; Simic, M. Synthesis 2012, 44, 399.  doi: 10.1055/s-0031-1289658

    7. [7]

      Xie, Z.; Wu, P.; Cai, L.; Tong, X. Tetrahedron Lett. 2014, 55, 2160.  doi: 10.1016/j.tetlet.2014.02.087

    8. [8]

      Yan, F.; Liang, H, ; Song, J.; Cui, J.; Liu, Q.; Liu, S.; Wang, P.; Dong, Y.; Liu, H. Org. Lett. 2017, 19, 86.  doi: 10.1021/acs.orglett.6b03364

    9. [9]

      Beccalli, E. M.; Bernasconi, A.; Borsini, E.; Broggini, G.; Rigamonti, M.; Zecchi, G. J. Org. Chem. 2010, 75, 6923  doi: 10.1021/jo101501u

    10. [10]

      Grigg, R.; Loganathan, V.; Sridharan, V.; Stevenson, P.; Sukirthalingam, S.; Worakun, T. Tetrahedron 1996, 52, 11479.  doi: 10.1016/0040-4020(96)00638-2

    11. [11]

      Gardiner, M.; Grigg, R.; Sridharan, V.; Vicker, N. Tetrahedron Lett. 1998, 39, 435.  doi: 10.1016/S0040-4039(97)10541-X

    12. [12]

      Fuwa, H.; Sasaki, M. Org. Biomol. Chem. 2007, 5, 2214.  doi: 10.1039/b707338k

    13. [13]

      Grigg, R.; Sansano, J. M. Tetrahedron 1996, 52, 13441.  doi: 10.1016/0040-4020(96)00801-0

    14. [14]

      Parthasarathy, K.; Jeganmohan, M.; Cheng, C. Org. Lett. 2006, 8, 621.  doi: 10.1021/ol0527936

    15. [15]

      Cao, J.; Kong, Y.; Deng, Y.; Lai, G.; Cui, Y.; Hu, Z.; Wang, G. Org. Biomol. Chem. 2012, 10, 9556.  doi: 10.1039/c2ob26727f

    16. [16]

      Grigg, R.; Sansano, J. M.; Santhakumar, V.; Sridharan, V.; Thangavelanthum, R.; Thornton-Pett, M.; Wilson, D. Tetrahedron 1997, 53, 11803.  doi: 10.1016/S0040-4020(97)00754-0

    17. [17]

      Fuwa, H.; Sasaki, M. Org. Biomol. Chem. 2007, 5, 2214.  doi: 10.1039/b707338k

    18. [18]

      Liang, H.; Yan, F.; Dong, X.; Liu, Q.; Wei, X.; Liu, S.; Dong, Y.; Liu, H. Chem. Commun. 2017, 53, 3138.  doi: 10.1039/C7CC00191F

    19. [19]

      Zhu, S.; Cao, J.; Wu, L.; Huang, X. J. Org. Chem. 2012, 77, 1049.

    20. [20]

      (a) Zhu, C.; Yang, B.; Jiang, T.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 2015, 54, 9066.
      (b) Qiu, Y.; Yang, B.; Zhu, C.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 2016, 128, 6630.

    21. [21]

      Persson, A. K. Å.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 2010, 49, 4624.  doi: 10.1002/anie.201000726

    22. [22]

      (a) Arisawa, M.; Terada, Y.; Takahashi, K.; Nakagawa, M.; Nishida, A. J. Org. Chem. 2006, 71, 4255.
      (b) Donohoe, T. J.; O'Riordan, T. J. C.; Rosa, C. P. Angew. Chem., Int. Ed. 2009, 48, 1014.

    23. [23]

      Poeylaut-Palena, A. A.; Testero, S. A.; Mata, E. G. Chem. Commun. 2011, 47, 1565.  doi: 10.1039/C0CC04115G

    24. [24]

      Edlin, C. D.; Faulkner, J.; Quayle, P. Tetrahedron Lett. 2006, 47, 1145.  doi: 10.1016/j.tetlet.2005.12.018

    25. [25]

      Bokka, A.; Hua, Y.; Berlin, A. S.; Jeon, J. ACS Catal. 2015, 5, 3189.  doi: 10.1021/acscatal.5b00431

    26. [26]

      (a) Kim, B. G.; Snapper, M. L. J. Am. Chem. Soc. 2006, 128, 52.
      (b) Peppers, B. P.; Diver, S. T. J. Am. Chem. Soc. 2004, 126, 9524.

    27. [27]

      Zeng, X.; Wei, Z.; Farina, V.; Napolitano, E.; Xu, Y.; Zhang, L.; Haddad, N.; Yee, N. K.; Grinberg, N.; Shen, S.; Senanayake, C. H. J. Org. Chem. 2006, 71, 8864.  doi: 10.1021/jo061587o

    28. [28]

      Dornan, P. K.; Wickens, Z. K.; Grubbs, R. H. Angew. Chem., Int. Ed. 2015, 54, 7134.  doi: 10.1002/anie.201501505

    29. [29]

      Gavenonis, J.; Arroyo, R. V.; Snapper, M. L. Chem. Commun. 2010, 46, 5692.  doi: 10.1039/c0cc00008f

    30. [30]

      (a) Rosillo, M.; Casarrubios, L.; Domínguez, G.; Pérez-Castells, J. Tetrahedron Lett. 2001, 42, 7029.
      (b) Rosillo, M.; Domínguez, G.; Casarrubios, L.; Amador, U.; Pérez-Castells, J. J. Org. Chem. 2004, 69, 2084.

    31. [31]

      (a) López, F.; Delgado, A.; Rodríguez, J. R.; Castedo, L.; Mascareñas, J. L. J. Am. Chem. Soc. 2004, 126, 10262.
      (b) Arisawa, M.; Fujii, Y.; Kato, H.; Fukuda, H.; Matsumoto, T.; Ito, M.; Abe, H.; Ito, Y.; Shuto, S. Angew. Chem., Int. Ed. 2013, 52, 1003.

    32. [32]

      Desroy, N.; Robert-Peillard, F.; Toueg, J.; Hénaut, C.; Duboc, R.; Rager, M.-N.; Savignac, M.; Gênet, J.-P. Synthesis 2004, 2665.

    33. [33]

      Kinderman, S. S.; Van Maarseveen, J. H.; Schoemaker, H. E.; Hiemstra, H.; Rutjes, F. P. T. Org. Lett. 2001, 3, 2045.  doi: 10.1021/ol016013e

    34. [34]

      Nada, T.; Yoneshige, Y.; Ii, Y.; Matsumoto, T.; Fujioka, H.; Shuto, S.; Arisawa, M. ACS Catal. 2016, 6, 3168.  doi: 10.1021/acscatal.6b00628

    35. [35]

      Barluenga, J.; Vicente, R.; López, L. A.; Tomás. M. J. Am. Chem. Soc. 2006, 128, 7050.

    36. [36]

      Brummond, K. M.; Yan, B. Synlett 2008, 2303.

    37. [37]

      Lindsay, V. N. G.; Fiset, D.; Gritsch, P. J.; Azzi, S.; Charette, A. B. J. Am. Chem. Soc. 2013, 135, 1463.  doi: 10.1021/ja3099728

    38. [38]

      Zheng, W.; Bora, P. P.; Sun, G.; Kang. Q. Org. Lett. 2016, 18, 3694.  doi: 10.1021/acs.orglett.6b01731

    39. [39]

      Lin, T.; Zhu, C.; Zhang, P.; Wang, Y.; Wu, H.; Feng, J.; Zhang, J. Angew. Chem., Int. Ed. 2016, 55, 10844.  doi: 10.1002/anie.201605530

    40. [40]

      Hyland, C. J. T.; Hegedus, L. S. J. Org. Chem. 2006, 71, 8658.  doi: 10.1021/jo061340r

    41. [41]

      Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2007, 9, 4821.  doi: 10.1021/ol702179n

    42. [42]

      González-Gómez, A.; Domínguez, G.; Pérez-Castells, J. Eur. J. Org. Chem. 2009, 5057.

    43. [43]

      Ma, Z.; He, S.; Song, W.; Hsung, R. P. Org. Lett. 2012, 14, 5736.  doi: 10.1021/ol302743k

    44. [44]

      Li, X.; Zhu, L.; Zhou, W.; Chen. Z. Org. Lett. 2012, 14, 436.  doi: 10.1021/ol202703a

    45. [45]

      Faustino, H.; Bernal, P.; Castedo, L.; López, F.; Mascareñas, J. L. Adv. Synth. Catal. 2012, 354, 1658.  doi: 10.1002/adsc.201200047

    46. [46]

      Suarez-Pantiga, S.; Hernández-Díaz, C.; Piedrafita, M.; Rubio, E.; Gonzáleza, J. M. Adv Synth. Catal. 2012, 354, 1651.  doi: 10.1002/adsc.201200043

    47. [47]

      Ocello, R.; Nisi, A. D.; Jia, M.; Yang, Q.; Monari, M.; Giacinto, P.; Bottoni, A.; Miscione, G. P.; Bandini. M. Chem. Eur. J. 2015, 21, 18445.  doi: 10.1002/chem.201503598

    48. [48]

      Li, G.; Zhou, E.; Li, X.; Bi, Q.; Wang, Z.; Zhao, Z.; Hu, W.; Chen, Z. Chem. Commun. 2013, 49, 4770.  doi: 10.1039/c3cc41769g

    49. [49]

      Wang, Y.; Zhang, P.; Qian, D.; Zhang, J. Angew. Chem., Int. Ed. 2015, 54, 14849.  doi: 10.1002/anie.201507165

    50. [50]

      Singh, R. R.; Pawar, S. K.; Huang, M.; Liu, R. Chem. Commun. 2016, 52, 11434.  doi: 10.1039/C6CC04308A

    51. [51]

      Faustino, H.; López, F.; Castedo, L.; Mascareñas, J. L. Chem. Sci. 2011, 2, 633.  doi: 10.1039/c0sc00630k

    52. [52]

      Francos, J.; Grande-Carmona, F.; Faustino, H.; Iglesias-Sigüenza, J.; Díez, E.; Alonso, I.; Fernández, R.; Lassaletta, J. M.; López, F.; Mascareñas, J. L. J. Am. Chem. Soc. 2012, 134, 14322.  doi: 10.1021/ja3065446

    53. [53]

      Pirovano, V.; Decataldo, L.; Rossi, E.; Vicente, R. Chem. Commun. 2013, 49, 3594.  doi: 10.1039/c3cc41514g

    54. [54]

      Faustino, H.; Alonso, I.; Mascareñas, J. L.; López, F. Angew. Chem., Int. Ed. 2013, 52, 6526.  doi: 10.1002/anie.201302713

    55. [55]

      Faustino, H.; Varela, I.; Mascareñas, J. L.; López, F. Chem. Sci. 2015, 6, 2903.  doi: 10.1039/C5SC00295H

    56. [56]

      Varela, I.; Faustino, H.; Díez, E.; Iglesias-Sigüenza, J.; Grande- Carmona, F.; Fernandez, R.; Lassaletta, J. M.; Mascareñas, J. L.; López. F. ACS Catal. 2017, 7, 2397.  doi: 10.1021/acscatal.6b03651

    57. [57]

      Peng, S.; Cao, S.; Sun, J. Org. Lett. 2017, 19, 524.  doi: 10.1021/acs.orglett.6b03691

    58. [58]

      Anorbe, L.; Poblador, A.; Domínguez, G.; Pérez-Castells, J. Tetrahedron Lett. 2004, 45, 4441.  doi: 10.1016/j.tetlet.2004.04.061

    59. [59]

      Hu, Y.; Yi, R.; Wu, F.; Wan, B. J. Org. Chem. 2013, 78, 7714.  doi: 10.1021/jo401330t

    60. [60]

      Brioche, J.; Meyer, C.; Cossy, J. Org. Lett. 2013, 15, 1626.  doi: 10.1021/ol400402n

    61. [61]

      Chakrabarty, I.; Inamdar, S. M.; Akram, M. O.; Gade, A. B.; Banerjee, S.; Berac, S.; Patil, N. T. Chem. Commun. 2017, 53, 196.  doi: 10.1039/C6CC07874E

    62. [62]

      Liu, R.; Hu, J.; Hong, J.; Lu, C.; Gao, J.; Jia, Y. Chem. Sci. 2017, 8, 2811.  doi: 10.1039/C6SC05450A

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    5. [5]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    6. [6]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    7. [7]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    8. [8]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    9. [9]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    10. [10]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    11. [11]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    12. [12]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    13. [13]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    14. [14]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    15. [15]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    16. [16]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    18. [18]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    19. [19]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    20. [20]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

Metrics
  • PDF Downloads(66)
  • Abstract views(2505)
  • HTML views(616)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return