Citation: Wang Leilei, Bao Pengli, Liu Weiwei, Liu Sitong, Hu Changsong, Yue Huilan, Yang Daoshan, Wei Wei. Direct C-H 3-Arylation of Quinoxalin-2(H)-ones with Aryl Diazonium Salts under Visible-Light Irradiation[J]. Chinese Journal of Organic Chemistry, ;2018, 38(12): 3189-3196. doi: 10.6023/cjoc201807014 shu

Direct C-H 3-Arylation of Quinoxalin-2(H)-ones with Aryl Diazonium Salts under Visible-Light Irradiation

  • Corresponding author: Wei Wei, weiweiqfnu@163.com
  • Received Date: 6 July 2018
    Revised Date: 22 July 2018
    Available Online: 22 December 2018

    Fund Project: the International Cooperation Project of Qinghai Province 2018-HZ-806the International Cooperation Project of Qinghai Province 2017-HZ-806the National Natural Science Foundation of China 21302109the Natural Science Foundation of Shandong Province ZR2018MB009the Natural Science Foundation of Shandong Province ZR2016JL012the National Natural Science Foundation of China 21302110Supported by the Natural Science Foundation of Shandong Province (Nos. ZR2018MB009, ZR2016JL012), the International Cooperation Project of Qinghai Province (Nos. 2018-HZ-806, 2017-HZ-806) and the National Natural Science Foundation of China (Nos. 21302109, 21302110)

Figures(3)

  • A simple and practical visible-light-induced protocol has been developed for the construction of 3-arylquinoxa-lin-2(1H)-ones via Eosin Y-catalyzed direct C-H 3-arylation of quinoxalin-2(H)-ones with aryl diazonium salts at room temperature in air. The present reaction provides a cost-effective and operationally straightforward approach to the target products in moderate to good yields, and does not require any metal reagents, bases, acids, and strong oxidants.
  • 加载中
    1. [1]

      (a) Rangisetty, J. B.; Gupta, C. N.; Prasad, A. L.; Srinivas, P.; Sridhar, N.; Parimoo, P.; Veeranjaneyulu, A. J. Pharm. Pharmacol. 2001, 53, 1409.
      (b) Carta, A.; Piras, S.; Loriga, G.; Paglietti, G. Mini-Rev. Med. Chem. 2006, 6, 1179.
      (c) Li, X.; Yang, K.-H.; Li, W.-L.; Xu, W.-F; Drugs Future 2006, 31, 979.
      (d) Chen, D.; Bao, W. Adv. Synth. Catal. 2010, 352, 955.
      (e) Jeon, S. O.; Lee, J. Y. J. Mater. Chem. 2012, 22, 7239.
      (f) Wen, J.; Wei, W.; Xue, S.; Yang, D.; Lou, Y.; Gao, C.; Wang, H. J. Org. Chem. 2015, 80, 4966.
      (g) Quinn, J.; Guo, C.; Ko, L.; Sun, B.; He, Y.; Li, Y. RSC Adv. 2016, 6, 22043.
      (h) Xie, L.-Y.; Li, Y.-J.; Qu, J.; Duan, Y.; Hu, J.; Liu, K.-J.; Cao, Z.; He, W.-M. Green Chem. 2017, 19, 5642.
      (i) Xie, L.-Y.; Qu, J.; Peng, S.; Liu, K.-J.; Wang, Z.; Ding, M.-H.; Wang, Y.; Cao, Z.; He, W.-M. Green Chem. 2018, 20, 760.

    2. [2]

      El-Hawash, S. A. M.; Habib, N. S.; Kassem, M. A. Arch. Pharm. 2006, 339, 564.  doi: 10.1002/(ISSN)1521-4184

    3. [3]

      Cil, O.; Phuan, P. W.; Lee, S.; Tan, J.; Haggie, P. M.; Levin, M. H.; Sun, L.; Thiagarajah, J. R.; Ma, T.; Verkman, A. S. Cell. Mol. Gastroenterol. Hepatol. 2016, 2, 317.  doi: 10.1016/j.jcmgh.2015.12.010

    4. [4]

      Koltun, D. O.; Parkhill, E. Q.; Vasilevich, N. I.; Glushkov, A. I.; Zilbershtein, T. M.; Ivanov, A. V.; Cole, A. G.; Henderson, I.; Zautke, N. A.; Brunn, S. A.; Mollova, N.; Leung, K.; Chisholm, J. W.; Zablocki, J. Bioorg. Med. Chem. Lett. 2009, 19, 2048.  doi: 10.1016/j.bmcl.2009.02.019

    5. [5]

      Qin, X.; Hao, X.; Han, H.; Zhu, S.; Yang, Y.; Wu, B.; Hussain, S.; Parveen, S.; Jing, C.; Ma, B.; Zhu, C. J. Med. Chem. 2015, 58, 1254.  doi: 10.1021/jm501484b

    6. [6]

      Willardsen, J. A.; Dudley, D. A.; Cody, W. L.; Chi, L.; McClanahan, T. B.; Mertz, T. E.; Potoczak, R. E.; Narasimhan, L. S.; Holland, D. R.; Rapundalo, S. T.; Edmunds, J. J. J. Med. Chem. 2004, 47, 4089.  doi: 10.1021/jm0497491

    7. [7]

      Kánai, K.; Arányi, P.; Böcskei, Z.; Ferenczy, G.; Harmat, V.; Simon, K.; Bátori, S.; Náray-Szabó, G.; Hermecz, I. J. Med. Chem. 2008, 51, 7514.  doi: 10.1021/jm800944x

    8. [8]

      Weiwer, M.; Spoonamore, J.; Wei, J.; Guichard, B.; Ross, N. T.; Masson, K.; Silkworth, W.; Dandapani, S.; Palmer, M.; Scherer, C. A.; Stern, A. M.; Schreiber, S. L.; Munoz, B. ACS Med. Chem. Lett. 2012, 3, 1034.  doi: 10.1021/ml300246r

    9. [9]

      Aoki, K.; Koseki, J.-I.; Takeda, S.; Aburada, M.; Miyamoto, K.-I. Chem. Pharm. Bull. 2007, 55, 922.  doi: 10.1248/cpb.55.922

    10. [10]

      (a) Křupková, S.; Funk, P.; Soural, M.; Hlaváč, J. ACS Comb. Sci. 2013, 15, 20.
      (b) Weïwer, M.; Spoonamore, J.; Wei, J.; Guichard, B.; Ross, N. T.; Masson, K.; Silkworth, W.; Dandapani, S.; Palmer, M.; Scherer, C. A.; Stern, A. M.; Schreiber, S. L.; Munoz, B. ACS Med. Chem. Lett. 2012, 3, 1034.
      (c) Dowlatabadi, R.; Khalaj, A.; Rahimian, S.; Montazeri, M.; Amini, M.; Shahverdi, A.; Mahjub, E. Synth. Commun. 2011, 41, 1650.
      (d) Cui, H.; Wei, W.; Yang, D.; Zhang, J.; Xu, Z.; Wen, J.; Wang, H. RSC Adv. 2015, 5, 84657.
      (e) Shaw, A. Y.; Denning, C. R.; Hulme, C. Synthesis 2013, 45, 459.

    11. [11]

      Sagadevan, A.; Ragupathi, A.; Hwang, K. C. Photochem. Photobiol. Sci. 2013, 12, 2110.  doi: 10.1039/c3pp50186h

    12. [12]

      (a) Hussain, S.; Pareen, S.; Hao, X.; Zhang, S.; Wang, W.; Qin, X.; Yang, Y.; Chen, X.; Zhu, S.; Zhu, C.; Ma, B. Eur. J. Med. Chem. 2014, 80, 383.
      (b) Wei, W.; Wen, J.; Yang, D.; Liu, X.; Guo, M.; Dong, R.; Wang, H. J. Org. Chem. 2014, 79, 4225.

    13. [13]

      (a) Carrër, A.; Brion, J. D.; Messaoudi, S.; Alami, M. Org. Lett. 2013, 15, 5606.
      (b) Carrër, A.; Brion, J. D.; Alami, M.; Messaoudi, S. Adv. Synth. Catal. 2014, 356, 3821.

    14. [14]

      Ramesh, B.; Reddy, C. R.; Kumar, G. R.; Reddy, B. V. S. Tetrahedron Lett. 2018, 59, 628.  doi: 10.1016/j.tetlet.2017.12.085

    15. [15]

      Yin, K.; Zhang, R. Org. Lett. 2017, 19, 1530.  doi: 10.1021/acs.orglett.7b00310

    16. [16]

      Paul, S.; Ha, J. H.; Park, G. E.; Lee, Y. R. Adv. Synth. Catal. 2017, 359, 1515.  doi: 10.1002/adsc.v359.9

    17. [17]

      Yuan, J.; Liu, S.; Qu, L. Adv. Synth. Catal. 2017, 359, 4197.  doi: 10.1002/adsc.v359.23

    18. [18]

    19. [19]

    20. [20]

      (a) Galli, C. Chem. Rev. 1988, 88, 765.
      (b) Milanesi, S.; Fagnoni, M.; Albini, A. J. Org. Chem. 2005, 70, 603.
      (c) Mo, F.; Dong, G.; Zhang, Y.; Wang, J. Org. Biomol. Chem. 2013, 11, 1582.
      (d) Hari, D. P.; Konig, B. Angew. Chem., Int. Ed. 2013, 52, 4734.
      (e) Yang, X.; Shi, L.; Fu, H. Synlett 2014, 25, 847.
      (f) Hua, Y.; Zhang, H.; Xia, H. Chin. J. Chem. 2018, 36, 11.

    21. [21]

      (a) Ghosh, I.; Marzo, L.; Das, A.; Shaikh, R.; König, B. Acc. Chem. Res. 2016, 49, 1566.
      (b) Majek, M.; Wangelin, A. J. Angew. Chem., Int. Ed. 2015, 54, 2270.
      (c) Guo, W.; Lu, L.; Wang, Y.; Wang, Y.; Chen, J.; Xiao, W. Angew. Chem., Int. Ed. 2015, 54, 2265.
      (d) Hering, T.; Hari, D. P.; König, B. J. Org. Chem. 2012, 77, 10347.
      (e) Gu, L.; Jin, C.; Liu, J. Green Chem. 2015, 17, 3733.
      (f) Fu, W.; Xu, F.; Fu, Y.; Zhu, M.; Yu, J.; Xu, C.; Zhou, D. J. Org. Chem. 2013, 78, 12202.
      (g) Gu, L.; Jin, C.; Liu, J.; Zhang, H.; Yuan, M.; Li, G. Green Chem. 2016, 18, 1201.
      (h) Xiao, T.; Dong, X.; Tang, Y.; Zhou, L. Adv. Synth. Catal. 2012, 354, 3195.
      (i) Zhang, J.; Chen, J.; Zhang, X.; Lei, X. J. Org. Chem. 2014, 79, 10682.

    22. [22]

      (a) Wei, W.; Cui, H.; Yang, D.; Yue, H.; He, C.; Zhang, Y.; Wang, H. Green Chem. 2017, 19, 5608.
      (b) Cui, H.; Wei, W.; Yang, D.; Zhang, Y.; Zhao, H.; Wang, L.; Wang, H. Green Chem. 2017, 19, 3520.
      (c) Wei, W.; Liu, C.; Yang, D.; Wen, J.; You, J.; Suo, Y.; Wang, H. Chem. Commun. 2013, 49, 10239.
      (d) Wei, W.; Wen, J.; Yang, D.; Du, J.; You, J.; Wang, H. Green Chem. 2014, 16, 2988.
      (e) Wei, W.; Wen, J.; Yang, D.; Guo, M.; Wang, Y.; You, J.; Wang, H. Chem. Commun. 2015, 51, 768.
      (f) Wei, W.; Liu, C.; Yang, D.; Wen, J.; You, J.; Wang, H. Adv. Synth. Catal. 2015, 357, 987.
      (g) Cui H.; Liu, X.; Wei, W.; Yang, D.; He, C.; Zhang, T.; Wang, H. J. Org. Chem. 2016, 81, 2252.
      (h) Wei, W.; Wen, J.; Yang, D.; Wu, M.; You, J.; Wang, H. Org. Biomol. Chem. 2014, 12, 7678.
      (i) Wei, W.; Li, J.; Yang, D.; Wen, J.; Jiao, Y.; You, J.; Wang, H. Org. Biomol. Chem. 2014, 12, 1861.
      (j) Liu, X.; Cui, H.; Yang, D.; Dai, S.; Zhang, T.; Sun, J.; Wei, W.; Wang, H. RSC Adv., 2016, 6, 51830.
      (k) Wei, W.; Cui, H.; Yang, D.; Liu, X.; He, C.; Dai, S.; Wang, H. Org. Chem. Front. 2017, 4, 26.
      (l) Wang, L.; Yue, H.; Yang, D.; Cui, H.; Zhu, M.; Wang, J.; Wei, W.; Wang, H. J. Org. Chem. 2017, 82, 6857.
      (m) Fu, Q.; Yi, D.; Zhang, Z.; Liang, W.; Chen, S.; Yang, L.; Zhang, Q.; Ji, J. X.; Wei, W. Org. Chem. Front. 2017, 4, 1385.

    23. [23]

      (a) Zhang, N.; Quan, Z.-J.; Zhang, Z.; Da, Y.-X.; Wang, X.-C. Chem. Commun. 2016, 52, 14234.
      (b) Hari, D. P.; Schroll, P.; König, B. J. Am. Chem. Soc. 2012, 134, 2958.
      (c) Gauchot, V.; Lee, A-L. Chem. Commun. 2016, 52, 10163.
      (d) Jin, C.; Su, L.; Ma, D.; Cheng, M. New J. Chem. 2017, 41, 14053.

  • 加载中
    1. [1]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    2. [2]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    3. [3]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    4. [4]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    5. [5]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    6. [6]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    7. [7]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    8. [8]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    9. [9]

      Yu XiongLi-Jun HuJian-Guo SongDi ZhangYi-Shuang PengXiao-Jun HuangJian HongBin ZhuWen-Cai YeYing Wang . Structure elucidation of plumerubradins A–C: Correlations between 1H NMR signal patterns and structural information of [2+2]-type cyclobutane derivatives. Chinese Chemical Letters, 2025, 36(5): 110149-. doi: 10.1016/j.cclet.2024.110149

    10. [10]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    11. [11]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    12. [12]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    13. [13]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    14. [14]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    15. [15]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    16. [16]

      Qiang FengJindong HaoYa HuRong FuWei WeiDong Yi . Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor. Chinese Chemical Letters, 2025, 36(6): 110582-. doi: 10.1016/j.cclet.2024.110582

    17. [17]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    18. [18]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    19. [19]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    20. [20]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

Metrics
  • PDF Downloads(9)
  • Abstract views(861)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return