Citation: Liu Jing, Wan Cong, Zheng Aili, Wang Lianyue, Yin Kaiyue, Liu Dandan, Wang Shengde, Ren Lanhui, Gao Shuang. α-Oxygenation of Benzylic Ethers to Esters Using MnOx-N@C Catalyst[J]. Chinese Journal of Organic Chemistry, ;2019, 39(3): 811-820. doi: 10.6023/cjoc201807011 shu

α-Oxygenation of Benzylic Ethers to Esters Using MnOx-N@C Catalyst

  • Corresponding author: Ren Lanhui, Ren_lanhui@163.com Gao Shuang, sgao@dicp.ac.cn
  • Received Date: 5 July 2018
    Revised Date: 4 September 2018
    Available Online: 19 March 2018

    Fund Project: the National Natural Science Foundation of China 21773227the National Natural Science Foundation of China 21773232Project supported by the National Natural Science Foundation of China (Nos. 21773227, 21773232)

Figures(7)

  • A catalytic system for the oxidation of benzylic ethers to esters has been developed utilizing reusable MnOx-N@C as catalyst and tert-butyl hydroperoxide (TBHP) as benign oxidant under neat condition. The catalytic oxidation system has good functional groups tolerance and excellent chemoselectivity, and this catalytic procedure can also be scaled up.
  • 加载中
    1. [1]

      (a) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234.
      (b) Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381.
      (c) Campbell, A. N.; Stahl, S. S. Acc. Chem. Res. 2012, 45, 851.
      (d) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780.
      (e) Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Chem. Rev. 2005, 105, 2329.
      (f) Shi, Z. J.; Sun, C. L.; Li, B. J. Chem. Rev. 2011, 111, 1293.
      (g) Reis, D. C.; Pinto, M. C. X.; Souza-Fagundes, E. M.; Wardell, S. M. S. V.; Wardell, J. L.; Beraldo, H. Eur. J. Med. Chem. 2010, 45, 3904.
      (h) Easmon, J.; Heinisch, G.; Pürstinger, G.; Langer, T.; Ö sterreicher, J. K. J. Med. Chem. 1997, 40, 4420.

    2. [2]

      (a) Crook, K. E.; Mcelval, S. M.; Mceivain, S. M. J. Am. Chem. Soc. 1930, 52, 4006.
      (b) Huntress, E. H.; Walter, H. C. J. Am. Chem. Soc. 1948, 70, 3702.
      (c) Stevens, J. I.; Sumrell, G.; Ham, G. E. J. Org. Chem. 1957, 22, 1724.

    3. [3]

      (a) Chen, M. S.; White, M. C. Science 2010, 327, 566.
      (b) Kappe, C. O.; Pieber, B. Green Chem. 2013, 15, 320.
      (c) Al-Hunaiti, A.; Raisanen, M.; Repo, T. Chem. Commun. 2016, 52, 2043.
      (d) Muhldorf, B.; Wolf, R. Angew. Chem., Int. Ed. 2016, 55, 427.
      (e) Fan, S.; Luan, Y.; Wang, J. J.; Gao, H. Y.; Zhang, X. W.; Wang, G. J. Mol. Catal. A: Chem. 2015, 404, 186.
      (f) Fan, S.; Dong, W. J.; Huang, X. B.; Gao, H. Y.; Wang, J. J.; Jin, Z. K.; Tang, J.; Wang, G. ACS Catal. 2017, 7, 243.
      (g) Nakanishia, M.; Bolm, C. Adv. Synth. Catal. 2007, 349, 861.

    4. [4]

      (a) Veluasmy, S.; Punnlyamurthy, T. Tetrahedron Lett. 2003, 44, 8955.
      (b) Houwer, J. D.; Tehrani, K. A.; Maes, B. U. W. Angew. Chem., Int. Ed. 2012, 51, 2745.
      (c) Ang, W. J.; Lam, Y. L. Org. Biomol. Chem. 2015, 13, 1048.
      (d) Wu, X. H.; Gorden, A. E. V. Eur. J. Org. Chem. 2009, 503.

    5. [5]

      (a) Lau, T. C.; Mak, C. K. Chem. Commun. 1995, 943.
      (b) Yi, C. S.; Kwon, K. H.; Lee, D. W. Org. Lett. 2009, 11, 1567.
      (c) Yusubov, M. S.; Zagulyaeva, A. A.; Zhdankin, V. V. Chem.-Eur. J. 2009, 15, 11091.

    6. [6]

      (a) Lee, N. H.; Lee, C. S.; Jung, D. S. Tetrahedron Lett. 1998, 39, 1385.
      (b) Shing, T. K. M.; Yeung, Y. Y.; Su, P. L. Org. Lett. 2006, 8, 3149.
      (c) Burange, A. S.; Kale, S. R.; Jayaram, R. V. Tetrahedron Lett. 2012, 53, 2989.
      (d) Shaabani, A.; Hezarkhani, Z.; Badali, E. RSC Adv. 2015, 5, 61759.
      (e) Ren, L. H.; Wang, L. Y.; Lv, Y.; Shang, S. S.; Chen, B.; Gao, S. Green Chem. 2015, 17, 2369.
      (f) Ren, L. H.; Wang, L. Y.; Lv, Y.; Li, G. S.; Gao S. Chin. J. Catal. 2016, 37, 1216(in Chinese). (任兰会, 王连月, 吕迎, 李国松, 高爽, 催化学报, 2016, 37, 1216.)
      (g) Nammalwar, B.; Fortenberry, C.; Bunce, R.; Lageshetty, A. S. K.; Ausman, K. D. Tetrahedron Lett. 2013, 54, 2010.

    7. [7]

      (a) Minisci, F.; Punta, C.; Recupero, F.; Fontana, F.; Pedulli, G. F. J. Org. Chem. 2002, 67, 2671.
      (b) Shaabani, A.; Farhangi, E.; Rahmati, A. Appl. Catal. A: Gen. 2008, 338, 14.
      (c) Wang, J. Q.; He, L. N. New J. Chem. 2009, 33, 1637.
      (d) Shaabani, A.; Keshipour, S.; Hamidzad, M.; Shaabani, S. J. Mol. Catal. A: Chem. 2014, 395, 494.

    8. [8]

      (a) Wu, X. F. Tetrahedron Lett. 2012, 53, 6023.
      (b) Song, Z. Z.; Gong, J. L.; Zhang, M.; Wu, X. F. Asian J. Org. Chem. 2012, 1, 214.

    9. [9]

      (a) Catino, A. J.; Forslund, R. E.; Doyle, M. P. J. Am. Chem. Soc. 2004, 126, 13622.
      (b) Wang, Y.; Kuang, Y.; Wang, Y. H. Chem. Commun. 2015, 51, 5852.

    10. [10]

      Li, H. R.; Li, Z. P.; Shi, Z. J. Tetrahedron 2009, 65, 1856.  doi: 10.1016/j.tet.2008.12.055

    11. [11]

      (a) Yu, J. Q.; Corey, E. J. Org. Lett. 2002, 4, 2727.
      (b) Urgoitia, G.; SanMartin, R.; Herreroa, M. T.; Domínguez, E. Green Chem. 2011, 13, 2161.

    12. [12]

      Wang, J. J.; Fan, S.; Luan, Y.; Tang, J.; Jin, Z. K.; Yang, M.; Lu, Y. F. RSC Adv. 2015, 5, 2405.  doi: 10.1039/C4RA11972J

    13. [13]

      (a) Yi, H.; Bian, C. L.; Hu, X.; Niu, L. B.; Lei, A. Chem. Commun. 2015, 51, 14046.
      (b) Ma, J. Q.; Hu, Z. M.; Li, M. C.; Zhao, W. J.; Hu, X. Q.; Mo, W. M.; Hu, B. X.; Sun, N.; Shen, Z. L. Tetrahedron 2015, 71, 6733.
      (c) Ren, L. H.; Wang, L. Y.; Lv, Y.; Li, G. S.; Gao, S. Org. Lett. 2015, 17, 2078.
      (d) Shaabani, A.; Laeini, M. S.; Shaabania, S.; Seyyedhamzeh, M. New J. Chem. 2016, 40, 2079.

    14. [14]

      Abudureheman, W.; Xiarepati, T.; Lu, C. D. Eur. J. Org. Chem. 2012, 3088.

    15. [15]

      Gonzalez-de-Castro, A.; Robertson, C. M.; Xiao, J. L. J. Am. Chem. Soc. 2014, 136, 8350.  doi: 10.1021/ja502167h

    16. [16]

      Zhang, Z. G.; Gao, Y.; Liu, Y.; Li, J. J.; Xie, H. X.; Li, H.; Wang, W. Org. Lett. 2015, 17, 5492.  doi: 10.1021/acs.orglett.5b02877

    17. [17]

      Ren, L.; Yang, M. M.; Tung, C. H.; Wu, L. Z.; Cong, H. ACS Catal. 2017, 7, 8134.  doi: 10.1021/acscatal.7b03029

    18. [18]

      Dai, W.; Li, J.; Li, G. S.; Yang, H.; Wang, L. Y.; Gao, S. Org. Lett. 2013, 15, 4138.  doi: 10.1021/ol401812h

    19. [19]

      Kwong, H. K.; Lo, P. K.; Lau, K. C.; Lau, T. C. Chem. Commun. 2011, 47, 4273.  doi: 10.1039/c0cc05487a

    20. [20]

      (a) Deng, S, C.; Meng, T. T.; Xu, B. L.; Gao, F.; Ding, Y. H.; Yu, L.; Fan, Y. N. ACS Catal. 2016, 6, 5807.
      (b) Deng, S, C.; Zhuang, K.; Xu, B. L.; Ding, Y. H.; Yu, L.; Fan, Y. N. Catal. Sci. Technol. 2016, 6, 1772.

    21. [21]

      Zhang, D. L.; Huang, Y. P.; Zhang, E. L.; Yi, R.; Chen, C.; Yu, L.; Xu, Q. Adv. Synth. Catal. 2018, 360, 784.  doi: 10.1002/adsc.v360.4

    22. [22]

      (a) Zhuang, X. D.; Chen, Y.; Liu, G.; Li, P. P.; Zhu, C. X.; Kang, E. T.; Neoh, K. G.; Zhang, B.; Zhu, J. H.; Li, Y. X. Adv. Mater. 2010, 22, 1731.
      (b) Jagadeesh, R. V.; Junge, H.; Pohl, M. M.; Radnik, J.; Brückner, A.; Beller, M. J. Am. Chem. Soc. 2013, 135, 10776.

    23. [23]

      (a) Santos, V. P.; Pereira, M. F. R.; Ó rfã o, J. J. M.; Figueiredo, J. L. Appl. Catal., B 2010, 99, 353.
      (b) Wei, Y. J.; Yan, L. Y.; Wang, C. Z.; Xu, X. G.; Wu, F.; Chen, G. J. Phys. Chem. B 2004, 108, 18547.

    24. [24]

      (a) Bakos, M.; Gyö mö re, Á . l.; Domján, A.; Soós, T. Angew. Chem., Int. Ed. 2017, 56, 5217.
      (b) Selva, M.; Militello, E.; Fabris, M. Green Chem. 2008, 10, 73.
      (c) Roth, G. P.; Stalder, R.; Long, T. R.; Sauer, D. R.; Djuric, S. W. J. Flow Chem. 2013, 3, 34.
      (d) Das, A.; Chaudhuri, R.; Liu, R. S. Chem. Commun. 2009, 4046.
      (e) Argouarch, G.; Grelaud, G.; Roisnel, T.; Humphrey, M. G.; Paul, F. Tetrahedron Lett. 2012, 53, 5015.
      (f) Ortiz, B.; Walls, F.; Yuste, F.; Barrios, H.; Obregón, R. S.; Pinelo, L. Synth. Commun. 1993, 23, 749.
      (g) Sun, L. L.; Guo, Y. P.; Peng, G. S.; Li, C. B. Synthesis 2008, 3487.
      (h) Molander, G. A.; Beaumard. F. Org. Lett. 2011, 13, 3948.
      (i) Khan, R.; Singh, T. P.; Singh, M. D. Synlett 2014, 25, 696.
      (j) Joshi, G.; Adimurthy, S. Synth. Commun. 2011, 41, 720.
      (k) Ji, Y.; Sweeney, J.; Zoglio, J.; Gorin, D. J. J. Org. Chem. 2013, 78, 11606.
      (l) Chng, L. L.; Yang, J. H.; Ying, J. Y. ChemSusChem 2015, 8, 1916.
      (m) Sanderson, J. N.; Dominey, A. P.; Percy, J. M. Adv. Synth. Catal. 2017, 359, 1007.
      (n) Subramanian, K.; Yedage, S. L.; Bhanage, B. M. J. Org. Chem. 2017, 82, 10025.
      (o) Hu, Y. K.; Li, B. D. Tetrahedron 2017, 73, 7301.
      (p) Mayhoub, A. S.; Talukdar, A.; Cushman, M. J. Org. Chem. 2010, 75, 3507.
      (q) Ji, Y.; Sweeney, J.; Zoglio, J.; Gorin, D. J. J. Org. Chem. 2013, 78, 11606.
      (r) Tang, Z.; Jiang, Q. T.; Peng, L. F.; Xu, X. H.; Li, J.; Qiu, R. H.; Au, C. T. Green Chem. 2017, 19, 5396.
      (s) Shao, C. D.; Lu, A. L.; Wang, X. L.; Zhou, B.; Guan, X. H.; Zhang, Y. H. Org. Biomol. Chem. 2017, 15, 5033.
      (t) Zhang, Z.; Tang, M. Y.; Zang, L.; Zou, L. H.; Li, J. Tetrahedron Lett. 2016, 57, 5681.
      (u) Dabral, S.; Engel, J.; Mottweiler, J.; Spoehrle, S. S. M.; Lahive, C. W.; Bolm, C. Green Chem. 2018, 20, 170.
      (v) Zhu, Y.; Yan, H.; Lu, L. H.; Liu, D. F.; Rong, G. W.; Mao, J. C. J. Org. Chem. 2013, 78, 9898.
      (w) Markgraf, J. H.; Choi, B. Y. Synth. commun. 1999, 29, 2405.
      (x) Liang, A. P.; Han, S. J.; Wang, L.; Li, J. Y.; Zou, D. P.; Wu, Y. J.; Wu, Y. S. Adv. Synth. Catal. 2015, 357, 3104.
      (y) Gonsalvi, L.; Arends, I. W. C. E.; Moilanen, P.; Sheldon, R. A. Adv. Synth. Catal. 2003, 345, 1321.
      (z) Zhang, Z. G.; Gao, Y.; Liu, Y.; Li, J. J.; Xie, H. X.; Li, H.; Wang, W. Org. Lett. 2015, 17, 5492.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    3. [3]

      Qiang FengJindong HaoYa HuRong FuWei WeiDong Yi . Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor. Chinese Chemical Letters, 2025, 36(6): 110582-. doi: 10.1016/j.cclet.2024.110582

    4. [4]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    5. [5]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    6. [6]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    7. [7]

      Xiao ZhuYanbing MoJiawei ChenGaopan LiuYonggang WangXiaoli Dong . A weakly-solvated ether-based electrolyte for fast-charging graphite anode. Chinese Chemical Letters, 2024, 35(8): 109146-. doi: 10.1016/j.cclet.2023.109146

    8. [8]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    9. [9]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    10. [10]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    11. [11]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    12. [12]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    13. [13]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    14. [14]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    15. [15]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    16. [16]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    17. [17]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    18. [18]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    19. [19]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    20. [20]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

Metrics
  • PDF Downloads(7)
  • Abstract views(1829)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return