Citation: Lü Hui, Xu Xuetao, Huang Danying, Wu Panpan, Sheng Zhaojun, Liu Wenfeng, Li Dongli, Alharbi Njud S., Zhang Kun, Wang Shaohua. Recent Progress on Endoplasmic Reticulum-Targetable Fluorescence Probe[J]. Chinese Journal of Organic Chemistry, ;2018, 38(12): 3165-3175. doi: 10.6023/cjoc201806043 shu

Recent Progress on Endoplasmic Reticulum-Targetable Fluorescence Probe

  • Corresponding author: Xu Xuetao, wyuchemxxt@126.com Wang Shaohua, wangshh@lzu.edu.cn
  • Received Date: 28 June 2018
    Revised Date: 26 July 2018
    Available Online: 22 December 2018

    Fund Project: Project supported by the Department of Education of Guangdong Province (Nos. 2017KTSCX185, 2017KSYS010, 2016KCXTD005), the Youth Team Fund of Wuyi University, and the National Natural Science Foundation of China (Nos. 21472077, 21772071)

  • The endoplasmic reticulum, a subcellular organelle, plays an important role in the life activities of mammalian cells. Therefore, visualizing the endoplasmic reticulum, and further examining its active substances, microenvironments and physiological processes have important guiding value for the diagnosis and treatment of related diseases. In recent years, the design and synthesis of endoplasmic reticulum-targetable fluorescent probes have received more and more attentions. Currently, reported endoplasmic reticulum-targetable fluorescent probes mainly include simple endoplasmic reticulum imaging, metal ions, small molecule material, big molecule material, microenvironments, etc. This article summarizes and describes the design and synthesis of the reported endoplasmic reticulum-targetable fluorescent probes, analyzes the application of endoplasmic reticulum fluorescent probes in the study of cellular physiological processes, and prospects the development trend of endoplasmic reticulum-targetable fluorescent probes.
  • 加载中
    1. [1]

      Vance, J. E. Traffic 2015, 16, 1.  doi: 10.1111/tra.2015.16.issue-1

    2. [2]

      Sovolyova, N.; Healy, S.; Samali, A.; Logue, S. E. Biol. Chem. 2014, 395, 1.  doi: 10.1515/hsz-2013-0174

    3. [3]

      Zhang, H.; Hu, J. Trends Cell Biol. 2016, 26, 934.  doi: 10.1016/j.tcb.2016.06.002

    4. [4]

      Brodsky, J. L.; Skach, W. R. Curr. Opin. Cell Biol. 2011, 23, 464.  doi: 10.1016/j.ceb.2011.05.004

    5. [5]

      Borgese, N.; Francolini, M.; Snapp, E. Curr. Opin. Cell Biol. 2006, 18, 358.  doi: 10.1016/j.ceb.2006.06.008

    6. [6]

      Westrate, L. M.; Lee, J. E.; Prinz, W. A.; Voeltz, G. K. Annu. Rev. Biochem. 2015, 84, 791.  doi: 10.1146/annurev-biochem-072711-163501

    7. [7]

      Li, M.; Fan, J. L.; Li, H. D.; Du, J. J.; Long, S. R.; Peng, X. J. Biomaterials 2018, 164, 98.  doi: 10.1016/j.biomaterials.2018.02.044

    8. [8]

      Liu, S. Y.; Ge, G. B.; Dong, W. B.; Peng, X. J.; Liu, F. Y.; Chen, S. S.; Sun, S. G. Sens. Actuators, A 2017, 253, 1145.

    9. [9]

      Li, H. D.; Yao, Q. C.; Fan, J. L.; Du, J. J.; Wang, J. Y.; Peng, X. J. Biosens. Bioelecton. 2017, 94, 536.  doi: 10.1016/j.bios.2017.03.039

    10. [10]

      Xu, G.; Yan, Q. L.; Lv, X. G.; Zhu, Y.; Xin, K.; Shi, B.; Wang, R. C.; Chen, J.; Gao, W.; Shi, P.; Fan, C. H.; Zhao, C. C.; Tian, H. Angew. Chem., Int. Ed. 2018, 57, 3626.  doi: 10.1002/anie.201712528

    11. [11]

      Han, H. H.; Qiu, Y. J.; Shi, Y. Y.; Wen, W.; He, X. P.; Dong, L. W.; Tan, Y. X.; Long, Y. T.; Tian, H.; Wang, H. Y. Theranostics 2017, 8, 3268.

    12. [12]

      Zhang, J. J.; Fu, Y. X.; Han, H. H.; Zang, Y.; Li, J.; He, X. P.; Feringa, B. L.; Tian, H. Nat. Commun. 2017, 8, 987.  doi: 10.1038/s41467-017-01137-8

    13. [13]

      Wu, H. J.; Jia, J. H.; Xu, Y. F.; Qian, X. H.; Zhu, W. P. Sens. Actuator, B 2018, 265, 59.
       

    14. [14]

      Ti, Y. Z.; Yu, L.; Tang, Y. Jin, T. X.; Yang, M.; Wang, R.; Xu, Y. F.; Zhu, W. P. Sens. Actuator, B 2018, 265, 582.

    15. [15]

      Li, D. D.; Xu, Y. Q.; Zhou, N. N.; Liu, J. X.; Wang, R.; Cheng, T.; Tang, Y.; Zhu, W. P.; Xu, Y. F.; Qian, X. H. Dyes Pigm. 2017, 136, 627.  doi: 10.1016/j.dyepig.2016.09.014

    16. [16]

      Li, J.; Chen, Y. H.; Chen, T. T.; Qiang, J.; Zhang, Z. J.; Wei, T. W.; Zhang, W.; Wang, F.; Chen, X. Q. Sens. Actuator, B 2018, 268, 446.

    17. [17]

      Lee, D.; Jeong, K.; Luo, X.; Kim, G.; Yang, Y. J.; Chen, X. Q.; Kim, S.; Yoon, J. J. Mater. Chem. B 2018, 6, 2541.  doi: 10.1039/C7TB01560G

    18. [18]

      Zhang, Z. J.; Wei, T. W.; Chen, Y. H.; Chen, T. T.; Chi, B.; Wang, F.; Chen, X. Q. Sens. Actuator, B 2018, 255, 2211.

    19. [19]

      Wu, X. F.; Shi, W.; Li, X. H.; Ma, H. M. Angew. Chem., Int. Ed. 2017, 56, 15319.  doi: 10.1002/anie.201708428

    20. [20]

      Xu, Y. H.; Shi, W.; He, X. Y.; Wu, X. F.; Li, X. H.; Ma, H. M. Anal. Chem. 2017, 89, 10980.  doi: 10.1021/acs.analchem.7b02815

    21. [21]

      Fang, Y.; Chen, W.; Shi, W.; Li, H. Y.; Xian, M.; Ma, H. M. Chem. Commun. 2017, 53, 8759.  doi: 10.1039/C7CC04093H

    22. [22]

      Wang, H.; Xue, K.; Li, P.; Yang, Y. Y.; He, Z. X.; Zhang, W.; Zhang, W.; Tang, B. Anal. Chem. 2018, 90, 6020.  doi: 10.1021/acs.analchem.7b04885

    23. [23]

      Yang, L. M.; Li, J.; Pan, W.; Wang, H. Y.; Li, N.; Tang, B. Chem. Commun. 2018, 54, 3656.  doi: 10.1039/C8CC01335G

    24. [24]

      Gao, X. N.; Jiang, L. L.; Hu, B.; Kong, F. P.; Liu, X. J.; Xu, K. H.; Tang, B. Anal. Chem. 2018, 90, 4719.  doi: 10.1021/acs.analchem.7b05343

    25. [25]

      Jones, V. C.; McKeown, L.; Verkhratsky, A.; Jones, O. T. BMC Neurosci. 2008, 9, 10.  doi: 10.1186/1471-2202-9-10

    26. [26]

      Diniz, J. R.; Correa, J. R.; Moreira, D.; Fontenele, R. S.; Oliveira, A. L.; Abdelnur, P. V.; Dutra, J. D. L.; Freire, R. O.; Rodrigues, M. O.; Neto, B. A. D. Inorg. Chem. 2013, 52, 10199.  doi: 10.1021/ic4017678

    27. [27]

      Zhang, H; Fan, J. L.; Dong, H. J.; Zhang, S. Z.; Xu, W. Y.; Wang, J. Y.; Gao, P.; Peng, X. J. J. Mater. Chem. B 2013, 1, 5450.  doi: 10.1039/c3tb20646g

    28. [28]

      D'Amore, C.; Orso, G.; Fusi, F.; Pagano, M. A.; Miotto, G.; Forgiarini, A.; Martin, S. D.; Castellani, G.; Ribaudo, G.; Rennison, D.; Brimble, M. A.; Hopkins, B.; Ferrarese, A.; Bova, S. Front Pharmacol. 2016, 7, 315.

    29. [29]

      Collot, M.; Kreder, R.; Tatarets, A. L., Patsenker, L. D.; Mely, Y.; Klymchenko, A. Chem. Commun. 2015, 51, 17136.  doi: 10.1039/C5CC06094J

    30. [30]

      Kamkaew, A.; Thavornpradit, S.; Puangsamlee, T.; Xin, D.; Wanichachev, N.; Burgess, K. Org. Biomol. Chem. 2015, 13, 8271.  doi: 10.1039/C5OB01104C

    31. [31]

      Phaniraj, S.; Gao, Z.; Rane, D.; Peterson, B. R. Dyes Pigm. 2016, 135, 127.  doi: 10.1016/j.dyepig.2016.05.007

    32. [32]

      Zheng, S.; Huang, C.; Zhao, X.; Zhang, Y.; Liu, S.; Zhu, Q. Spectrochem. Acta A 2017, 189, 231.

    33. [33]

      Meinig, J. M.; Fu, L.; Peterson, B. R. Angew. Chem., Int. Ed. 2015, 54, 9696.  doi: 10.1002/anie.v54.33

    34. [34]

      Lew, R. L.; Briskin, D. P.; Wyse, R. E. Plant Physiol. 1986, 82, 47.  doi: 10.1104/pp.82.1.47

    35. [35]

      Giannini, J. L.; Gildensoph, L. H.; Reynolds-niesman, I.; Briskin, D. P. Plant Physiol. 1987, 85, 1129-1136.  doi: 10.1104/pp.85.4.1129

    36. [36]

      Lee, Y. H.; Park, N.; Park, Y. B.; Hwang, Y. J.; kang, C.; Kim, J. S. Chem. Commun. 2014, 50, 3197.  doi: 10.1039/C4CC00091A

    37. [37]

      Park, S. Y.; Kim, W.; Park, S. H.; Han, J. Y.; Lee, J.; Kang, C.; Lee, M. H. Chem. Commun. 2017, 53, 32.

    38. [38]

      Lin, W.; Buccella, D.; Lippard, S. J. J. Am. Chem. Soc. 2013, 135, 13512.  doi: 10.1021/ja4059487

    39. [39]

      Gan, X.; Sun, P.; Li, H.; Tian, X.; Zhang, B.; Wu, J.; Tian, Y.; Zhou, H. Biosens. Bioelectron. 2016, 86, 393.  doi: 10.1016/j.bios.2016.06.087

    40. [40]

      Lee, M. H.; Lee, H.; Chang, M. J.; Kim, H. S.; Kang, C.; Kim, J. S. Dyes Pigm. 2016, 130, 245.  doi: 10.1016/j.dyepig.2016.03.032

    41. [41]

      Xiao, H.; Li, P.; Hu, X.; Shi, X.; Zhang, W.; Tang, B. Chem. Sci. 2016, 7, 6153.  doi: 10.1039/C6SC01793B

    42. [42]

      Gao, C.; Tian, Y.; Zhang, R. B.; Jing, J.; Zhang, X. Anal. Chem. 2017, 89, 12945.  doi: 10.1021/acs.analchem.7b03809

    43. [43]

      Xiao, H.; Liu, X.; Wu, C.; Wu, Y.; Li, P.; Guo, X.; Tang, B. Biosens. Bioelectron. 2017, 91, 449.  doi: 10.1016/j.bios.2016.12.068

    44. [44]

      Li, J. P.; Xia, S.; Zhang, H.; Qu, G. R.; Guo, H. M. Sens Actuator, B 2018, 255, 622.

    45. [45]

      Liu, P.; Han, X. Y.; Yu, F. B.; Chen, L. X. Chin. J. Anal. Chem. 2015, 43, 1829.  doi: 10.1016/S1872-2040(15)60883-0

    46. [46]

      Ali, F.; Sreedharan, S.; Ashoka, A. H.; Saeed, H. K.; Smythe, C. G. W.; Thomas, J. A.; Das, A. Anal. Chem. 2017, 89, 12087.  doi: 10.1021/acs.analchem.7b02567

    47. [47]

      Tang, Y.; Ma, Y.; Xu, A.; Xu G.; Lin, W. Methods Appl. Fluoresc. 2017, 5, 024005.  doi: 10.1088/2050-6120/aa6773

    48. [48]

      Tang, Y.; Xu, A.; Ma, Y.; Xu, G.; Gao, S.; Lin, W. Sci. Rep. 2017, 7, 12944.  doi: 10.1038/s41598-017-13325-z

    49. [49]

      Meng, Q.; Jia, H.; Succar, P.; Zhao, L.; Zhang, R.; Duan, C.; Zhang, Z. Biosens. Bioelectron. 2015, 74, 461.  doi: 10.1016/j.bios.2015.06.077

    50. [50]

      Hakamata, W.; Tamura, S.; Hirano, T.; Nishio, T. ACS Med. Chem. Lett. 2014, 5, 321.  doi: 10.1021/ml400398t

    51. [51]

      Shaulov-Rotem, Y.; Merquiol, E.; Weiss-Sadan, T.; Moshel, O.; Salpeter, S.; Shabat, D.; Kaschani, F.; Kaiser, M.; Blum, G. Chem. Sci. 2016, 7, 1322.  doi: 10.1039/C5SC03207E

    52. [52]

      Xu, S.; Liu, H. W.; Hu, X. X.; Huan, S. Y.; Zhang, Y.; Liu, Y.; Yuan, L.; Qu, F. L.; Zhang, X. B.; Tan, W. Anal. Chem. 2017, 89, 7641.  doi: 10.1021/acs.analchem.7b01561

    53. [53]

      McMahon, B. K.; Pal, R.; Parker, D. Chem. Commun. 2013, 49, 5363.  doi: 10.1039/c3cc42308e

    54. [54]

      Ghule, N. V.; Bhosale, R. S.; Kharat, K.; Puyad, A. L.; Bhosale, S. V.; Bhosale, S. V. ChemPlusChem 2015, 80, 485.  doi: 10.1002/cplu.201402307

    55. [55]

      Upendar, R. G.; Anila, H. A.; Firoj, A.; Nandaraj, T.; Samit, C.; Amitava, D. Org. Lett. 2015, 17, 5532.  doi: 10.1021/acs.orglett.5b02568

    56. [56]

      Arai, S.; Lee, S. C.; Zhai, D.; Suzuki, M.; Chang, Y. T. Sci. Rep. 2014, 4, 6701.

    57. [57]

      Yang, Z.; He, Y.; Lee, J. H.; Chae, W. S.; Ren, W. X.; Lee, J. H.; Kang, C.; Kim, J. S. Chem. Commun. 2014, 50, 11672.  doi: 10.1039/C4CC04915B

    58. [58]

      Lee, H.; Yang, Z.; Wi, Y.; Kim, T. W.; Verwilst, P.; Lee, Y. H.; Han, G.; Kang, C.; Kim, J. S. Bioconjugate Chem. 2015, 26, 2474.  doi: 10.1021/acs.bioconjchem.5b00508

    59. [59]

      Xiao, H.; Wu, C.; Li, P.; Gao, W.; Zhang, W.; Zhang, W.; Tong, L.; Tang, B. Chem. Sci. 2017, 8, 7025.  doi: 10.1039/C7SC02330H

    60. [60]

      Takakura, H.; Zhang, Y.; Erdmann, R. S.; Thompson, A. D.; Lin, Y.; McNellis, B.; Rivera-Molina, F.; Uno, S.; Kamiya, M.; Urano, Y.; Rothman, J. E.; Bewersdorf, J.; Schepartz, A.; Toomre, D. Nat. Biotechnol. 2017, 35, 773.  doi: 10.1038/nbt.3876

    61. [61]

      Kaplfán, P.; Račay, P.; Lehotský, J.; Mézešová, V. Neurochem. Res. 1995, 20, 815.  doi: 10.1007/BF00969693

    62. [62]

      Yang, Z.; Wi, Y.; Yoon, Y. M.; Verwilst, P.; Jang, J. H.; Kim, T. H.; Kang, C.; Kim, J. S. Chem. Asian J. 2016, 11, 527.  doi: 10.1002/asia.v11.4

  • 加载中
    1. [1]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    2. [2]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    3. [3]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    4. [4]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    5. [5]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    6. [6]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    7. [7]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    8. [8]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    9. [9]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    10. [10]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    11. [11]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    12. [12]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    13. [13]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    14. [14]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    15. [15]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    16. [16]

      Jiming XIYukang TENGRui ZHANGZhenzhong LU . Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 847-854. doi: 10.11862/CJIC.20240367

    17. [17]

      Yuanyu YANGJianhua XUEYujia BAILulu CUIDongdong YANGQi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005

    18. [18]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

Metrics
  • PDF Downloads(16)
  • Abstract views(1405)
  • HTML views(252)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return