Citation: Li Yingjun, Wang Siyuan, Jin Kun, Gao Lixin, Sheng Li, Zhang Nan, Liu Jihong, Li Jia. Synthesis and Cdc25B/PTP1B Inhibitory Activity Evaluation of Novel Acylhydrazone Derivatives Containing Carbazole Moity[J]. Chinese Journal of Organic Chemistry, ;2019, 39(2): 491-499. doi: 10.6023/cjoc201806042 shu

Synthesis and Cdc25B/PTP1B Inhibitory Activity Evaluation of Novel Acylhydrazone Derivatives Containing Carbazole Moity

  • Corresponding author: Li Jia, chemlab.lnnu@163.com
  • Received Date: 27 June 2018
    Revised Date: 22 August 2018
    Available Online: 10 February 2018

    Fund Project: Project supported by the Natural Science Foundation of Liaoning Province (No. 20102126)the Natural Science Foundation of Liaoning Province 20102126

Figures(5)

  • A series of novel acylhydrazone derivatives 6 containing carbazole moity were synthesized by carbazole and 4-cyanobenzyl chloride as starting materials via multi-step reactions. Their structures were characterized by IR, 1H NMR, 13C NMR spectra and elemental analysis. All synthesized target compounds were evaluated for the inhibitory activities against Cdc25B and PTP1B. The results show that the target compounds display significant inhibitory activities against Cdc25B/PTP1B. Among them, compound 4-((carbazol-9-yl)methyl)-N'-(2-hydroxy-1-naphthalenylmethylene)benzoyl hydrazide (6g) had the highest inhibitory activities against Cdc25B and PTP1B with IC50 values of (2.16±0.38) and (1.06±0.23) μg/mL, respectively. The molecular docking results indicated that the hydrogen bond and hydrophobic interaction formed between compound 6g and Cdc25B/PTP1B enzyme.
  • 加载中
    1. [1]

      Ommis, V.; Demurtas, M.; Deplano, A.; Balboni, G.; Baldisserotto, A.; Manfredini, S.; Pacifico, S.; Liekens, S.; Balzarini, J. Molecules 2016, 21, 579.  doi: 10.3390/molecules21050579

    2. [2]

      Temirak, A.; Shaker, Y. M.; Ragab, F. A. F.; Ali, M. M.; Soliman, S. M.; Mortier, J.; Wolber, G.; Ali, H. I.; Diwani, H. I. E. Arch. Pharm. Chem. Life Sci. 2014, 347, 291.  doi: 10.1002/ardp.v347.4

    3. [3]

      Wu, D. Y.; Jin, F. F.; Lu, W. Q.; Zhu, J.; Li, C.; Wang, W.; Tang, Y.; Jiang, H. L.; Huang, J.; Liu, G. X.; Li, J. Chem. Biol. Drug Des. 2012, 79, 897.  doi: 10.1111/jpp.2012.79.issue-6

    4. [4]

      Taha, M.; Ismail, N. H.; Jamil, W.; Rashwan, H.; Kashif, S. M.; Sain, A. A.; Adenan, M. I.; Anouar, E. H.; Ali, M.; Rahim, F.; Khan, K. M. Eur. J. Med. Chem. 2014, 84, 731.  doi: 10.1016/j.ejmech.2014.07.078

    5. [5]

      Bouhadir, K. H.; Koubeissi, A.; Mohsen, F. A.; El-Harakeh, M. D.; Cheaib, R.; Younes, J.; Azzi, G.; Eid, A. A. Bioorg. Med. Chem. Lett. 2016, 26, 1020.  doi: 10.1016/j.bmcl.2015.12.042

    6. [6]

      Uppal, G.; Bala, S.; Kamboj, S.; Saini, M. Pharma Chem. 2011, 3, 250.

    7. [7]

      He, H.; Xia, H.; Xia, Q.; Ren, Y.; He, H. Bioorg. Med. Chem. 2017, 25, 5652.  doi: 10.1016/j.bmc.2017.08.038

    8. [8]

      Feng, Y. X.; Xue, L. W.; Zhang, C. X. J. Chil. Chem. Soc. 2014, 59, 2555.  doi: 10.4067/S0717-97072014000300006

    9. [9]

      Maddela S.; Ajitha M.; Venugopal M.; Maddela R. Int. J. Pharm. Pharm. Sci. 2014, 6, 254.

    10. [10]

      Kumar, V.; Basavarajaswamy, G.; Rai, M. V.; Poojary, B.; Pai, V. R.; Shruthi, N.; Bhat, M. Bioorg. Med. Chem. Lett. 2015, 25, 1420.  doi: 10.1016/j.bmcl.2015.02.043

    11. [11]

      Mentese, E.; Bekircan, O.; Islamoglu, F.; Beris, F. S. Rev. Chim. (Bucharest, Rom.) 2015, 66, 25.

    12. [12]

      Burgeson, J. R.; Gharaibeh, D. N.; Moore, A. L.; Larson, R. A.; Amberg, S. M.; Bolken, T.; Hruby, D. E.; Dai, D. C. Bioorg. Med. Chem. Lett. 2013, 23, 5840.  doi: 10.1016/j.bmcl.2013.08.103

    13. [13]

      Eldehna, W. M.; Fares, M.; Abdel-Aziz, M. M.; Abdel-Aziz, H. A. Molecules 2015, 20, 8800.  doi: 10.3390/molecules20058800

    14. [14]

      Velezheva, V.; Brenman, P.; Ivanov, P.; Kornienko, A.; Lyubimov, S.; Kazarian, K.; Nikonenko, B.; Majorov, K.; Apt, A. Bioorg. Med. Chem. Lett. 2016, 26, 978.  doi: 10.1016/j.bmcl.2015.12.049

    15. [15]

      Torre, S. M. D. D. L.; Vázquez C.; González-Chávez, Z.; Yépez-Mulia, L.; Nieto-Meneses, R.; Jasso-Chávez, R.; Saavedra, E.; Hernández-Luis, F. Bioorg. Med. Chem. Lett. 2017, 27, 3403.  doi: 10.1016/j.bmcl.2017.06.013

    16. [16]

      Murali, K.; Sparkes, H. A.; Prasad, K. J. R. Eur. J. Med. Chem. 2017, 128, 319.  doi: 10.1016/j.ejmech.2017.02.009

    17. [17]

      Sun, L. Q.; Wu, Y. B.; Liu, Y. H.; Chen, X. F.; Hu, L. X. Bioorg. Med. Chem. Lett. 2017, 27, 261.  doi: 10.1016/j.bmcl.2016.11.068

    18. [18]

      Kato, A.; Nagatsuka, Y.; Hitratsuka, T.; Kiuchi, S.; Iwase, Y.; Okuno, Y.; Tsukamoto, T.; Kiran, Y. B.; Sakai, N.; Konakahara, T. Tetrahedron 2016, 72, 4258.  doi: 10.1016/j.tet.2016.05.068

    19. [19]

      Mahapatra, D. K.; Das, D.; Shivhare, R. Int. J. Pharm. Sci. Drug Res. 2017, 9, 139.

    20. [20]

      Itoh, T.; Hatae, N.; Nishiyama, T.; Choshi, T.; Hibino, S.; Yoshimura, T.; Ishikura, M. Med. Chem. Res. 2017, 128, 319.

    21. [21]

      Arun, A.; Patel, O. P. S.; Saini, D.; Yadav, P. P.; Konwar, R. Biomed. Pharmacother. 2017, 93, 510.  doi: 10.1016/j.biopha.2017.06.065

    22. [22]

      Wang, G. C.; Wang, J.; He, D. X.; Li, X.; Li, J.; Peng, Z. Y. Bioorg. Med. Chem. Lett. 2016, 26, 2806.  doi: 10.1016/j.bmcl.2016.04.071

    23. [23]

      Iqbal, S.; Khan, M. A.; Javaid, K.; Sadiq, R.; Fazal-ur-Rehman, S.; Choudhary, M. I.; Basha, F. Z. Bioorg. Chem. 2017, 74, 72.  doi: 10.1016/j.bioorg.2017.07.006

    24. [24]

      Börger, C.; Brütting, C.; Julich-Gruner, K. K.; Hesse, R.; Kumar, P.; Kutz, S. K.; Rönnefahrt, M.; Thomas, C.; Wan, B. J.; Franzblau, S. G. Bioorg. Med. Chem. 2017, 25, 6167.  doi: 10.1016/j.bmc.2016.12.038

    25. [25]

      Chirke, S. S.; Krishna, J. S.; Rathod, B. B.; Bonam, S. R.; Khedkar, V. M.; Rao, B. V.; Kumar, H. M. S.; Shetty, P. R. Med. Chem. Drug Discovery 2017, 2, 7309.

    26. [26]

      Kong, X. Q.; Zhang, H. Z.; Cao, C. S.; Zhou, S. L.; Pang, G. S.; Shi, Y.-H. Bioorg. Med. Chem. 2016, 24, 1376.  doi: 10.1016/j.bmc.2016.02.013

    27. [27]

      Sadiq, Z.; Akbar, E.; Naz, A. N. Int. J. Pharma Bio Sci. 2014, 5, 455.

    28. [28]

      Salih, N.; Salimon, J.; Yousif, E. Arabian J. Chem. 2016. 9, S781.  doi: 10.1016/j.arabjc.2011.08.013

    29. [29]

      Wang, P.-Y.; Fang, H.-S.; Shao, W.-B.; Zhou, J.; Chen, Z.; Song, B.-A.; Yang, S. Bioorg. Med. Chem. Lett. 2017, 27, 4294.  doi: 10.1016/j.bmcl.2017.08.040

    30. [30]

      Clausen, J. D.; Kjellerup, L.; Cohrt, K. O.; Hansen, J. B.; Dalby-Brown, W.; Winther, A. M. Bioorg. Med. Chem. Lett. 2017, 27, 4564.  doi: 10.1016/j.bmcl.2017.08.067

    31. [31]

      Wang, W. S.; Li, Q.; Wei, Y. F.; Xue, J.; Sun, X.; Yu, Y.; Chen, Z.; Li, S. Z.; Duan, L.-P. Int. J. Parasitol.:Drugs Drug Resist. 2017, 7, 191.  doi: 10.1016/j.ijpddr.2017.03.007

    32. [32]

      Wang, W. S.; Li, J.; Yao, J. M.; Wang, T.; Li, S. Z.; Zheng, X. T.; Duan, L. P.; Zhang, W.-B. J. Antimicrob. Chemother. 2017, 72, 3122.  doi: 10.1093/jac/dkx250

    33. [33]

      Rostom, S. A. F.; Badr, M. H.; Razik, H. A. A. E.; Ashour, H. M. A. Eur. J. Med. Chem. 2017, 139, 263.  doi: 10.1016/j.ejmech.2017.07.053

    34. [34]

      Sarkis, M.; Miteva, M. A.; Lang, M. C. D.; Jaouen, M.; Sari, M. A.; Galcéra, M. O.; Ethève-Quelquejeu, M.; Garbay, C.; Bertho, G.; Braud, E. Proteins:Struct., Funct., Bioinf. 2013, 21, 7165.

    35. [35]

      Lavecchia, A.; Cosconati, S.; Limongelli, V.; Novellino, E. ChemMedChem 2006, 1, 540.  doi: 10.1002/(ISSN)1860-7187

    36. [36]

      Wang, G. C.; Chen, M.; Qiu, J.; Xie, Z. Z.; Cao, A. B. Bioorg. Med. Chem. Lett. 2018, 28, 113.  doi: 10.1016/j.bmcl.2017.11.047

    37. [37]

      Lavecchia, A.; Coluccia, A.; Giovanni, C. D.; Novellino, E. Anticancer Agents Med. Chem. 2008, 8, 843.  doi: 10.2174/187152008786847783

    38. [38]

      Ge, Y.; Kamp, M. V. D.; Malaisree, M.; Liu, D.; Liu, Y.; Mulholland, A. J. J. Comput.-Aided Mol. Des. 2017, 31, 995.  doi: 10.1007/s10822-017-0073-y

    39. [39]

      Cai, J. Y.; Zhao, L.; Tao, W. Y. Pharm. Biol. 2015, 53, 1030.  doi: 10.3109/13880209.2014.957781

    40. [40]

      Li, Y. J.; Yu, Y.; Jin, K.; Gao, L. X.; Luo, T. C.; Sheng, L.; Shao, X.; Li, J. Bioorg. Med. Chem. Lett. 2014, 24, 4125.  doi: 10.1016/j.bmcl.2014.07.055

    41. [41]

      Li, Y.-J.; Shi, X.-L.; Gao, L.-X.; Jin, K.; Sheng, L.; Wu, J.-H.; Peng, L.-N.; Li, J. Chin. J. Org. Chem. 2015, 35, 191(in Chinese).
       

    42. [42]

      Li, Y.-J.; Yu, Y.; Jin, K.; Gao, L.-X.; Luo, T.-C.; Sheng, L.; Shao, X.; Li, J. Chin. J. Org. Chem. 2015, 35, 129(in Chinese).
       

    43. [43]

      Li, Y.-J.; Li, J.-Y.; Peng, L.-N.; Gao, L.-X.; Jin, K.; Sheng, L.; Zhang, N.; Wang, S.-Y.; Li, J. Chin. J. Org. Chem. 2017, 37, 485(in Chinese).
       

    44. [44]

      Li, Y.-J.; Wang, S.-Y.; Jin, K.; Gao, L.-X.; Sheng, L.; Zhang, N.; Yang, K.-D.; Zhao, Y.; Li, J. Chin. J. Org. Chem. 2018, 38, 1242(in Chinese).
       

    45. [45]

      Kahveci, B.; Yılmaz, F.; Menteşe, E.; Özil, M.; Karaoğlu, Ş. A. J. Heterocycl. Chem. 2014, 51, 982.  doi: 10.1002/jhet.v51.4

    46. [46]

      Bayrak, H.; Demirbas, A.; Karaoglu, S. A.; Demirbas, N. Eur. J. Med. Chem. 2009, 44, 1057.  doi: 10.1016/j.ejmech.2008.06.019

    47. [47]

      Zhou, M.; Eun, Y. J.; Guzei, I. A.; Weibel, D. B. ACS Med. Chem. Lett. 2013, 4, 880.  doi: 10.1021/ml400234x

    48. [48]

      Li, Y.-J.; Li, J.-Y.; Jin, K.; Cao, X. Chin. J. Magn. Reson. 2017, 34, 25(in Chinese).  doi: 10.11938/cjmr20170104

    49. [49]

      Li, Y.-J.; Li, J.-Y.; Xu, Y.-T.; Jin, K.; Cao, X. Chin. J. Org. Chem. 2017, 37, 896(in Chinese).
       

    50. [50]

      Guo, D. C.; Li, P. L.; Wang, X.; Wang, L. Y.; Wu, P. L. Synth. Commun. 2010, 40, 3315.  doi: 10.1080/00397910903419811

    51. [51]

      Li, Y.-J.; Sun, S.-Q. Semimicro Organic Chemistry Experiment, Chemical Industry Press, Beijing, 2009, pp. 114~115(in Chinese).

    52. [52]

      Li, Y.-J.; Zhang, N.; Jin, K.; Xu, Y.-T.; Wang, S.-Y.; Zhou, X.-X. Chin. J. Org. Chem. 2017, 37, 2640(in Chinese).
       

    53. [53]

      Huang, W. G.; Jiang, Y. Y.; Li, Q.; Li, J.; Li, J. Y.; Lu, W.; Cai, J. C. Tetrahedron 2005, 61, 1863.  doi: 10.1016/j.tet.2004.12.033

    54. [54]

      Sun, L. P.; Shen, Q.; Piao H. H.; Ma, W. P.; Gao, L. X.; Zhang, W.; Nan, F. J.; Li, J.; Piao, H. R. Eur. J. Med. Chem. 2011, 46, 3630.  doi: 10.1016/j.ejmech.2011.05.027

  • 加载中
    1. [1]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    2. [2]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    5. [5]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    8. [8]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    9. [9]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    10. [10]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    11. [11]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    12. [12]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    13. [13]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    14. [14]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    15. [15]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    16. [16]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    17. [17]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    18. [18]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    19. [19]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    20. [20]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

Metrics
  • PDF Downloads(8)
  • Abstract views(1169)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return