Citation: Yuan Shuo, Wang Sixi, Chen Jinjie, Zhao Longfei, Yu Bin, Liu Hongmin. Aniline-Promoted Synthesis of Isobenzofuranone Derivatives[J]. Chinese Journal of Organic Chemistry, ;2018, 38(11): 3009-3015. doi: 10.6023/cjoc201806035 shu

Aniline-Promoted Synthesis of Isobenzofuranone Derivatives

  • Corresponding author: Yu Bin, zzuyubin@hotmail.com Liu Hongmin, liuhm@zzu.edu.cn
  • Received Date: 21 June 2018
    Revised Date: 16 July 2018
    Available Online: 24 November 2018

    Fund Project: the Undergraduate Innovation and Entrepreneurship Training Program of Zhengzhou University 201810459101the National Natural Science Foundation of China 81773562the Key Research Program of Higher Education of Henan Province 18B350009the National Natural Science Foundation of China 81703326the National Key Research Program of Proteins 2016YFA0501800the China Postdoctoral Science Foundation 2018M630840the Open Project of Guangdong Provincial Key Laboratory of New Drug Screening GDKLNDS-2018OF006Project supported by the National Natural Science Foundation of China (Nos. 81430085, 81773562, 81703326), the National Key Research Program of Proteins (No. 2016YFA0501800), the Scientific Program of Henan Province (No. 182102310123), the China Postdoctoral Science Foundation (No. 2018M630840), the Open Project of Guangdong Provincial Key Laboratory of New Drug Screening (No. GDKLNDS-2018OF006), the Key Research Program of Higher Education of Henan Province (No. 18B350009), and the Undergraduate Innovation and Entrepreneurship Training Program of Zhengzhou University (No. 201810459101)the National Natural Science Foundation of China 81430085the Scientific Program of Henan Province 182102310123

Figures(3)

  • Isobenzofuranone derivatives are widely found in nature and have shown diverse biological activities. In this work, the aniline-promoted synthesis of isobenzofuranone derivatives starting from 2-carboxybenzaldehyde and substituted acetophenones under mild reaction conditions is reported. This method has broad substrate scope, high yields, and is operationally convenient, and therefore could serve as an attractive strategy for practical synthesis of isobenzofuranone derivatives.
  • 加载中
    1. [1]

      Dragan, A.; Jones, D. H.; Kennedy, A. R.; Tomkinson, N. C. Org. Lett. 2016, 18, 3086.  doi: 10.1021/acs.orglett.6b01203

    2. [2]

      (a) Rosengren, A. M.; Karlsson, B. C.; Nicholls, I. A. ACS Med. Chem. Lett. 2012, 3, 650.
      (b) Matsumori, N.; Morooka, A.; Murata, M. J. Med. Chem. 2006, 49, 3501.

    3. [3]

      Sueki, S.; Wang, Z. J.; Kuninobu, Y. Org. Lett. 2016, 18, 304.  doi: 10.1021/acs.orglett.5b03474

    4. [4]

      (a) Yu, B.; Wang, S. Q.; Qi, P. P.; Yang, D. X.; Tang, K.; Liu, H. M. Eur. J. Med. Chem. 2016, 124, 350.
      (b) Shi, X. J.; Yu, B.; Wang, J. W.; Qi, P. P.; Tang, K.; Huang, X.; Liu, H. M. Sci. Rep. 2016, 6, 31607.

    5. [5]

      Tu, F. X.; Pang, Q. Y.; Huang, T. T.; Zhao, Y.; Liu, M. X.; Chen, X. Med. Sci. Monit. 2017, 23, 4004.  doi: 10.12659/MSM.902770

    6. [6]

      (a) Kim, H.; Swamy, K. M. K.; Kwon, N.; Kim, Y.; Park, S.; Yoon, J. ChemPhysChem. 2017, 18, 1752.
      (b) Liang, B.; Zou, J.; Su, J. Pharmacoepidemiol. Drug Saf. 2015, 24, 555.

    7. [7]

      (a) Butkevich, A. N.; Ta, H.; Ratz, M.; Stoldt, S.; Jakobs, S.; Belov, V. N.; Hell, S. W. ACS Chem. Biol. 2018, 13, 475.
      (b) Zhu, X. Q.; Zhou, J.; Wang, C. H.; Li, X. T.; Jing, S. J. Phys. Chem. B 2011, 115, 3588.
      (c) Rabiee, A.; Ebrahim-Habibi, A.; Navidpour, L.; Morshedi, D.; Ghasemi, A.; Sabbaghian, M.; Nemati-Lay, M.; Nemat-Gorgani, M. Chem. Biol. Drug Des. 2011, 78, 659.
      (d) Hadj-Esfandiari, N.; Navidpour, L.; Shadnia, H.; Amini, M.; Samadi, N.; Faramarzi, M. A.; Shafiee, A. Bioorg. Med. Chem. Lett. 2007, 17, 6354.

    8. [8]

      (a) Yaremenko, A. G.; Shelyakin, V. V.; Volochnyuk, D. M.; Rusanov, E. B.; Grygorenko, O. O. Tetrahedron Lett. 2013, 54, 1195.
      (b) Akagi, Y.; Yamada, S. I.; Etomi, N.; Kumamoto, T.; Nakanishi, W.; Ishikawa, T. Tetrahedron Lett. 2010, 51, 1338.
      (c) Karmakar, R.; Pahari, P.; Mal, D. Tetrahedron Lett. 2009, 50, 4042.

    9. [9]

      Lee, D. Y.; Cho, C. S.; Jiang, L. H.; Wu, X.; Shim, S. C.; Oh, D. H. Synth. Commun. 2006, 27, 3449.

    10. [10]

      Sahoo, S. C.; Nath, U.; Pan, S. C. Eur. J. Org. Chem. 2017, 2017, 4434.  doi: 10.1002/ejoc.v2017.30

    11. [11]

      Goncalves, C. J.; Lenoir, A. S.; Padaratz, P.; Correa, R.; Niero, R.; Cechinel-Filho, V.; Campos B. F. Eur. J. Med. Chem. 2012, 56, 120.  doi: 10.1016/j.ejmech.2012.08.015

    12. [12]

      (a) Sangshetti, J. N.; Ansari, S. A. M. K.; Shinde, D. B. Chin. Chem. Lett. 2011, 22, 163.
      (b) da Silva Maia, A. F.; Siqueira, R. P.; de Oliveira, F. M.; Ferreira, J. G.; da Silva, S. F.; Caiuby, C. A. D.; de Oliveira, L. L.; de Paula, S. O.; Souza, R. A. C.; Guilardi, S.; Bressan, G. C.; Teixeira, R. R. Bioorg. Med. Chem. Lett. 2016, 26, 2810.

    13. [13]

      (a) Heravi, M. M.; Rasmi, V.; Bamoharram, F. F.; Sadjadi, S.; Fotouhi, L.; Sadjadi, S.; Bakavoli, M. Synth. Commun. 2009, 39, 4109.
      (b) Rastegari, F.; Mohammadpoor-Baltork, I.; Khosropour, A. R.; Tangestaninejad, S.; Mirkhani, V.; Moghadam, M. RSC Adv. 2015, 5, 15274.

    14. [14]

      (a) Zambre, S. S.; Darandale, S. N.; Sangshetti, J. N.; Shinde, D. B. Arabian J. Chem. 2016, 9, 1416.
      (b) Landge, S. M.; Berryman, M.; Török, B. Tetrahedron Lett. 2008, 49, 4505.

    15. [15]

      Kore, R.; Srivastava, R. Catal. Commun. 2011, 12, 1420.  doi: 10.1016/j.catcom.2011.05.030

    16. [16]

      Palillero-Cisneros, A.; Bedolla-Medrano, M.; Ordóñez, M. Tetrahedron 2018, 74, 4174.  doi: 10.1016/j.tet.2018.05.086

    17. [17]

      Bassin, J. P.; Anagani, B.; Benham, C.; Goyal, M.; Hashemian, M.; Gerhard, U. Molecules 2016, 21, 967.  doi: 10.3390/molecules21080967

    18. [18]

      (a) Yu, C. G.; Huang, H.; Li, X. M.; Zhang, Y. T.; Li, H.; Wang, W. Chem. Eur. J. 2016, 22, 9240.
      (b) Balaraman, K.; Ding, R. S.; Wolf, C. Adv. Synth. Catal. 2017, 359, 4165.

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    3. [3]

      Lanjun Cheng Xinyuan Wang Jie An Xiang Wu Chengfeng Zhu Yanming Fu Yougui Li . Improvement of the Resolution Experiment of Racemic Tartaric Acid. University Chemistry, 2025, 40(7): 277-285. doi: 10.12461/PKU.DXHX202408010

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    6. [6]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    7. [7]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    8. [8]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    9. [9]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    10. [10]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    11. [11]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    12. [12]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    16. [16]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    19. [19]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    20. [20]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

Metrics
  • PDF Downloads(25)
  • Abstract views(1465)
  • HTML views(315)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return