Citation: Sheng Jiajun, Yu Ya'nan, Wang Xin, Qian Yu, Fu Liwu, Zhao Yun, Ma Mingliang, Hu Wenhao. Synthesis of Paclitaxel Side Chain via Multi-Component Reaction and Its Application to the Synthesis of Paclitaxel Analogues[J]. Chinese Journal of Organic Chemistry, ;2019, 39(2): 377-389. doi: 10.6023/cjoc201806031 shu

Synthesis of Paclitaxel Side Chain via Multi-Component Reaction and Its Application to the Synthesis of Paclitaxel Analogues

  • Corresponding author: Ma Mingliang, mlma@brain.ecnu.edu.cn Hu Wenhao, huwh9@mail.sysu.edu.cn
  • Received Date: 24 July 2018
    Revised Date: 17 December 2018
    Available Online: 21 February 2018

    Fund Project: the National Natural Science Foundation of China 21332003the National Natural Science Foundation of China 21572067Project supported by the National Natural Science Foundation of China (Nos. 21572067, 21332003)

Figures(4)

  • Under the catalysis of Cu(OTf)2, a hydroxy ylide trapping based multi-component reaction using water, diazoacetates, aromatic aldehydes and aromatic amines was successfully carried out to construct α-hydroxy-β-amino acid ester skeleton in one step. The taxol oxazolidine-type side chains were efficiently synthesized after further chemical transformations. Moreover, 14 taxane derivatives were synthesized through esterification of obtained side chains and 7-O-(triethylsilyl) baccatin Ⅲ or 7, 10-dimethoxy-10-beacetyl baccatin Ⅲ, and several novel compounds with excellent activity were discovered in the test of anti-tumor activity. In this paper, combining the methodology and application of multi-component reaction, a highly efficient method for synthesizing paclitaxel side chain derivatives was developed, which was applied into the semi-synthesis of paclitaxel analogues. This research provided a new approach to the study of structure-activity relationship and had potential application value.
  • 加载中
    1. [1]

    2. [2]

      Rowinsky, E. K. Annu. Rev. Med. 1997, 48, 353-374.  doi: 10.1146/annurev.med.48.1.353

    3. [3]

      Shi, Q. W. Chin. Tradit. Herb. Drugs 2011, 42, 1878 (in Chinese).
       

    4. [4]

      (a) Nicolaou, K. C.; Yang, Z.; Liu, J. J.; Ueno, H.; Nantermet, P. G.; Guy, R. K.; Claiborne, C. F.; Renaud, J.; Couladouros, E. A.; Paulvannan, K.; Sorensen, E. J. Nature 1994, 367, 630.
      (b) Nicolaou, K. C.; Dai, W. M.; Guy, R. K. Angew. Chem., Int. Ed. 1994, 33, 15.
      (c) Holton, R. A.; Somoza, C.; Kim, H. B.; Liang, F.; Biediger, R. J.; Boatman, P. D.; Shindo, M.; Smith, C. C.; Kim, S.; Nadizadeh, H.; Suzuki, Y.; Tao, C.; Vu, P.; Tang, S.; Zhang, P.; Murthi, K. K.; Gentile, L. N.; Liu, J. H. J. Am. Chem. Soc. 1994, 116, 1597.
      (d) Danishefsky, S. J.; Masters, J. J.; Young, W. B.; Link, J. T.; Snyder, L. B.; Magee, T. V.; Jung, D. K.; Isaacs, R. C. A.; Bornmann, W. G.; Alaimo, C. A.; Coburn, C. A.; Grandi, M. J. D. J. Am. Chem. Soc. 1996, 118, 2843.
      (e) Wender, P. A.; Badham, N. F.; Conway, S. P.; Floreancig, P. E.; Glass, T. E.; Houze, J. B.; Crauss, N. E.; Lee, D.; Marquess, D. G.; McGrane, P. L.; Meng, W.; Natchus, M. G.; Shuker, A. J.; Sutton, J. C.; Taylor, R. E. J. Am. Chem. Soc. 1997, 119, 2755.
      (f) Morihira, K.; Hara, R.; Kawahara, S.; Nishimori, T.; Nakamura, N.; Kusama, H.; Kuwajima, I. J. Am. Chem. Soc. 1998, 120, 12980.
      (g) Mukaiyama, T.; Shiina, I.; Iwadare, H.; Saitoh, M.; Nishimura, T.; Ohkawa, N.; Sakoh, H.; Nishimura, K.; Tani, Y.; Hasegawa, M.; Yamada, K.; Saitoh, K. Chem.-Eur. J. 1999, 5, 121.
      (h) Doi, T.; Fuse S.; Miyamoto, S.; Nakai, K.; Sasuga, D.; Takahashi, T. Chem.-Asian J. 2006, 1, 370.

    5. [5]

      (a) Guenard, D.; Gueritte-Voegelein, F.; Potier, P. Acc. Chem Res. 1993, 26, 160.
      (b) Ojima, I.; Habus, I.; Zhao, M.; Zucco, M.; Park, Y. H.; Sun, C. M.; Brigaud, T. Tetrahedron 1992, 34, 6985.

    6. [6]

      (a) Denis, J. N.; Greene, A. E.; Serra, A. A.; Luche, M. J. J. Org. Chem. 1986, 51, 46.
      (b) Deng, L.; Jacobson, E. N. J. Org. Chem. 1992, 57, 4320.
      (c) Li, G.; Chang, H. T.; Sharpless, K. B. Angew. Chem., Int. Ed. Engl. 1996, 35, 451.

    7. [7]

      Sharpless, K. B.; Wang, Z. M.; Kolb, H. C. J. Org. Chem. 1994, 59, 5104.  doi: 10.1021/jo00096a072

    8. [8]

      (a) Liu, W.; Lv, B.; Gong, L. Angew. Chem., Int. Ed. 2009, 48, 6503.
      (b) Bergmeier, S. C. Tetrahedron 2000, 56, 2561.
      (c) Larrow, J. F.; Schaus, S. E.; Jacobsen, E. N. J. Am. Chem. Soc. 1996, 118, 7420.
      (d) Olofsson, B.; Somfai, P. J. Org. Chem. 2002, 67, 8574.
      (e) Hu, X. E. Tetrahedron 2004, 60, 2701.

    9. [9]

      (a) Qian, Y.; Xu, X. F.; Jiang, L. Q.; Prajapati, D.; Hu, W. H. J. Org. Chem. 2010, 75, 7483.
      (b) Guo, Z. Q.; Shi, T. D.; Jiang, J.; Yang, L. P.; Hu, W. H. Org. Biomol. Chem. 2009, 7, 5028.

    10. [10]

      (a) Torssell, S.; Kienle, M.; Somfai, P. Angew. Chem., Int. Ed. 2005, 44, 3096.
      (b) Torssell, S.; Somfai, P. Adv. Synth. Catal. 2006, 348, 2421.
      (c) Sheng, J. J.; Chang, H.; Qian, Y.; Ma, M. L.; Hu, W. H. Tetrahedron Lett. 2018, 59, 2141.

    11. [11]

      Xu, X. F.; Guo, X.; Han, X. C.; Yang, L. P.; Hu, W. H. Org. Chem. Front. 2014, 1, 181.  doi: 10.1039/c3qo00040k

    12. [12]

      Verkade, J.; Van Hemert, L.; Quaedflieg, P.; Alsters, P.; Van Delft, F.; Rutjes, F. Tetrahedron Lett. 2006, 47, 8109.
      Li, Q. F.; Lin, H. X.; Cui, Y. M.; Xu, P. P. Eur. J. Med. Chem. 2015, 104, 97.

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    3. [3]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    4. [4]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    5. [5]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    6. [6]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    7. [7]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    8. [8]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    9. [9]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    10. [10]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    11. [11]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    12. [12]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    13. [13]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    14. [14]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    16. [16]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    19. [19]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    20. [20]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

Metrics
  • PDF Downloads(20)
  • Abstract views(2920)
  • HTML views(289)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return