Citation: Hou Jiao, Zhang Xinting, Yu Wenquan, Chang Junbiao. I2-Mediated Oxidative C-O Bond Formation for the Synthesis of Isoxazoles[J]. Chinese Journal of Organic Chemistry, ;2018, 38(12): 3236-3241. doi: 10.6023/cjoc201806026 shu

I2-Mediated Oxidative C-O Bond Formation for the Synthesis of Isoxazoles

  • Corresponding author: Yu Wenquan, wenquan_yu@zzu.edu.cn Chang Junbiao, changjunbiao@zzu.edu.cn
  • Received Date: 16 June 2018
    Revised Date: 2 August 2018
    Available Online: 23 December 2018

    Fund Project: the Outstanding Young Talent Research Fund of Zhengzhou University 1521316004the National Natural Science Foundation of China 81773570Project supported by the National Natural Science Foundation of China (Nos. 81773570, 81330075) and the Outstanding Young Talent Research Fund of Zhengzhou University (No. 1521316004)the National Natural Science Foundation of China 81330075

Figures(1)

  • A variety of mono-, di-, and tri-substituted (aryl, alkyl, and/or alkenyl) isoxazoles were synthesized from readily accessible α, β-unsaturated oximes via I2-mediated oxidative C-O bond formation. The features of this synthetic approach include no use of transition metals, simple operation, mild reaction conditions, short reaction time, and broad substrate scope.
  • 加载中
    1. [1]

      (a) Grünanger, P.; Vita-Finzi, P.; Dowling, J. E. In Chemistry of Heterocyclic Compounds: Isoxazoles, Part 2, Vol. 49, Eds.: Taylor, E. C.; Wipf, P., John Wiley & Sons, New York, 1999, pp. 1~888.
      (b) Vitale, P.; Scilimati, A. Curr. Org. Chem. 2013, 17, 1986.
      (c) Vitale, P.; Scilimati, A. Synthesis 2013, 45, 2940.
      (d) Hu, F.; Szostak, M. Adv. Synth. Catal. 2015, 357, 2583.

    2. [2]

      (a) Mares, D.; Romagnoli, C.; Tosi, B.; Benvegnu, R.; Bruni, A.; Vicentini, C. B. Fungal Genet. Biol. 2002, 36, 47.
      (b) Ohigashi, A.; Kanda, A.; Tsuboi, H.; Hashimoto, N. Org. Process Res. Dev. 2005, 9, 179.
      (c) Yu, G. J.; Iwamoto, S.; Robins, L. I.; Fettinger, J. C.; Sparks, T. C.; Lorsbach, B. A.; Kurth, M. J. J. Agric. Food Chem. 2009, 57, 7422.

    3. [3]

      (a) Baraldi, P. G.; Barco, A.; Benetti, S.; Pollini, G. P.; Simoni, D. Synthesis 1987, 857.
      (b) Charest, M. G.; Lerner, C. D.; Brubaker, J. D.; Siegel, D. R.; Myers, A. G. Science 2005, 308, 395.
      (c) Ikeda, R.; Kuwano, R. Chem.-Eur. J. 2016, 22, 8610.

    4. [4]

      (a) Ahmed, M. S. M.; Kobayashi, K.; Mori, A. Org. Lett. 2005, 7, 4487.
      (b) Tang, S.; He, J.; Sun, Y.; He, L.; She, X. Org. Lett. 2009, 11, 3982.
      (c) Dou, G.; Xu, P.; Li, Q.; Xi, Y.; Huang, Z.; Shi, D. Molecules 2013, 18, 13645.
      (d) Gao, P.; Li, H.-X.; Hao, X.-H.; Jin, D.-P.; Chen, D.-Q.; Yan, X.-B.; Wu, X.-X.; Song, X.-R.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2014, 16, 6298.
      (e) Harigae, R.; Moriyama, K.; Togo, H. J. Org. Chem. 2014, 79, 2049.
      (f) Kivrak, A.; Zora, M. Tetrahedron 2014, 70, 817.
      (g) Raghava, B.; Parameshwarappa, G.; Acharya, A.; Swaroop, T. R.; Rangappa, K. S.; Ila, H. Eur. J. Org. Chem. 2014, 1882.
      (h) Chen, W.; Zhang, J.; Wang, B.; Zhao, Z.; Wang, X.; Hu, Y. J. Org. Chem. 2015, 80, 2413.
      (i) He, Y.; Xie, Y.-Y.; Wang, Y.-C.; Bin, X.-M.; Hu, D.-C.; Wang, H.-S.; Pan, Y.-M. RSC Adv. 2016, 6, 58988.
      (j) Kumar, G. R.; Kumar, Y. K.; Reddy, M. S. Chem. Commun. 2016, 52, 6589.

    5. [5]

      (a) Sun, Y.; Abdukader, A.; Zhang, H.; Yang, W.; Liu, C. RSC Adv. 2017, 7, 55786.
      (b) Abdukader, A.; Sunb, Y.; Zhang, Z.; Liu, C. Catal. Commun. 2018, 105, 43.
      (c) Desai, V. G.; Naik, S. R.; Dhumaskar, K. L. Synth. Commun. 2014, 44, 1453.
      (d) Kurangi, R. F.; Kawthankar, R.; Sawal, S.; Desai, V. G.; Tilve, S. G. Synth. Commun. 2007, 37, 587.
      (e) Desai, V. G.; Tilve, S. G. Synth. Commun. 1999, 29, 3017.
      (f) Wei, X.; Fang, J.; Hu, Y.; Hu, H. Synthesis 1992, 1205.
      (g) Sharma, T. C.; Rojindar, S.; Berge, D. D.; Kale, A. V. Indian J. Chem. 1986, 25B, 437.

    6. [6]

      (a) Zi, W.; Zuo, Z.; Ma, D. Acc. Chem. Res. 2015, 48, 702.
      (b) Zhao, J.; Gao, W.; Chang, H.; Li, X.; Liu, Q.; Wei, W. Chin. J. Org. Chem. 2014, 34, 1941(in Chinese).

    7. [7]

      (a) Uyanik, M.; Okamoto, H.; Yasui, T.; Ishihara, K. Science 2010, 328, 1376.
      (b) Finkbeiner, P.; Nachtsheim, B. J. Synthesis 2013, 45, 979.
      (c) Liu, D.; Lei, A. Chem. Asian J. 2015, 10, 806.
      (d) Satish, G. Synlett 2015, 26, 1913.
      (e) Gao, W.-C.; Hu, F.; Huo, Y.-M.; Chang, H.-H.; Li, X.; Wei, W.-L. Org. Lett. 2015, 17, 3914.

    8. [8]

      Gao, W.-C.; Wang, R.-L.; Zhang, C. Org. Biomol. Chem. 2013, 11, 7123.  doi: 10.1039/c3ob41566j

    9. [9]

      Rong, H.-J.; Yao, J.-J.; Li, J.-K.; Qu, J. J. Org. Chem. 2017, 82, 5557.  doi: 10.1021/acs.joc.7b00361

    10. [10]

      (a) Yu, W.; Huang, G.; Zhang, Y.; Liu, H.; Dong, L.; Yu, X.; Li, Y.; Chang, J. J. Org. Chem. 2013, 78, 10337.
      (b) Niu, P.; Kang, J.; Tian, X.; Song, L.; Liu, H.; Wu, J.; Yu, W.; Chang, J. J. Org. Chem. 2015, 80, 1018.
      (c) Yu, W.; Chang, J. Chin. J. Org. Chem. 2018, 38, 215(in Chinese).

    11. [11]

      Through a systematic literature search, some examples of 3-methyl isoxazole synthesis using I2/KI in THF/H2O were found in the following references: (a) Büchi, G.; Vederas, J. C. J. Am. Chem. Soc. 1972, 94, 9128.
      (b) Alberola, A.; Bañez, J. M.; Calvo, L.; Rodríguez, M. T. R.; Sañudo, M. C. J. Heterocycl. Chem. 1993, 30, 467.

    12. [12]

      Zhu, Y.-P.; Fei, Z.; Liu, M.-C.; Jia, F.-C.; Wu, A.-X. Org. Lett. 2013, 15, 378.  doi: 10.1021/ol303331g

    13. [13]

      Zhang, X.; Kang, J.; Niu, P.; Wu, J.; Yu, W.; Chang, J. J. Org. Chem. 2014, 79, 10170.  doi: 10.1021/jo501844x

    14. [14]

      Isoxazoline intermediate 3a was obtained according to the procedure described in reference 11b.

    15. [15]

      Barluenga, J.; Jardon, J.; Rubio, V.; Gotor, V. J. Org. Chem. 1983, 48, 1379.

    16. [16]

      Kidwai, M.; Kukreja, S.; Thakur, R. Lett. Org. Chem. 2006, 3, 135.

    17. [17]

      Barnes, R. P.; Dodson, L. B. J. Am. Chem. Soc. 1943, 65, 1585.  doi: 10.1021/ja01248a039

    18. [18]

      Rao, K. S. R. K. M.; Rao, N. V. S. Indian J. Chem. 1968, 6, 66.

    19. [19]

      Morrocchi, S.; Ricca, A.; Zanarotti, A.; Bianchi, G.; Gandolfi, R.; Grünanger, P. Tetrahedron Lett. 1969, 10, 3329.

    20. [20]

      Mitchell, A. D.; Nonhebel, D. C. Tetrahedron 1976, 32, 2437.  doi: 10.1016/0040-4020(76)87030-5

    21. [21]

      Bianchi, G. Tetrahedron 1965, 21, 817.  doi: 10.1016/0040-4020(65)80014-X

  • 加载中
    1. [1]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    2. [2]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    3. [3]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    4. [4]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    5. [5]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    6. [6]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    7. [7]

      Dongying FuLin PanYanli MaYue Zhang . Bilayered Dion–Jacobson lead-iodine hybrid perovskite with aromatic spacer for broadband photodetection. Chinese Chemical Letters, 2025, 36(2): 109621-. doi: 10.1016/j.cclet.2024.109621

    8. [8]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    9. [9]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

    10. [10]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    11. [11]

      Qian WuMengda XuTianjiao MaShuzhen YanJin LiXuesong Jiang . Chalcone-derived oxime esters with efficient photoinitiation properties under LED irradiation. Chinese Chemical Letters, 2025, 36(3): 110427-. doi: 10.1016/j.cclet.2024.110427

    12. [12]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    13. [13]

      Shicheng DongJun Zhu . Could π-aromaticity cross an unsaturated system to a fully saturated one?. Chinese Chemical Letters, 2024, 35(6): 109214-. doi: 10.1016/j.cclet.2023.109214

    14. [14]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    15. [15]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    16. [16]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    17. [17]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    18. [18]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    19. [19]

      Shan-Shan LiJuan LuoShu-Nuo LiangDan-Na ChenLi-Ning ChenCheng-Xue PanPeng-Ju Xia . Efficient and regioselective C=S bond difunctionalization through a three-component radical relay strategy. Chinese Chemical Letters, 2025, 36(6): 110424-. doi: 10.1016/j.cclet.2024.110424

    20. [20]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

Metrics
  • PDF Downloads(6)
  • Abstract views(746)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return