Citation: Yu Jiao, Lin Jinhong, Xiao Jichang. ZnO-Promoted Wittig gem-Difluoroolefination of Aldehydes with [Ph3P+CF2H·Br-][J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 265-269. doi: 10.6023/cjoc201806024 shu

ZnO-Promoted Wittig gem-Difluoroolefination of Aldehydes with [Ph3P+CF2H·Br-]

  • Corresponding author: Xiao Jichang, jchxiao@sioc.ac.cn
  • Received Date: 15 June 2018
    Revised Date: 6 July 2018
    Available Online: 24 January 2018

    Fund Project: the Chinese Academy of Sciences XDA02020106the Key Research Program of Frontier Sciences (CAS) QYZDJSSW-SLH049the National Natural Science Foundation of China 21672242the National Basic Research Program of China 973计划Project supported by the National Basic Research Program of China (973 Program, No. 2015CB931903), the National Natural Science Foundation of China (Nos. 21421002, 21472222, 21502214, 21672242), the Chinese Academy of Sciences (Nos. XDA02020105, XDA02020106), and the Key Research Program of Frontier Sciences (CAS) (No. QYZDJSSW-SLH049)the National Natural Science Foundation of China 21502214the National Natural Science Foundation of China 21421002the National Basic Research Program of China 2015CB931903the National Natural Science Foundation of China 21472222the Chinese Academy of Sciences XDA02020105

Figures(1)

  • Wittig gem-difluoroolefination of aldehydes with difluoromethyl phosphonium salt (Ph3P+CF2H·Br-) by using zinc oxide as a base is described. Although the proton in the CF2H group is acidic and a base could easily lead to its deprotonation to form ylide (Ph3P+CF2-), the attack of the base at the positive phosphorus atom may also take place to produce a nucleophilic [HCF2-] equivalent, and then nucleophilic difluoromethylation instead of Wittig reaction would occur. The use of ZnO as the base favored the Wittig reaction and the nucleophilic difluoromethylation was not observed. Furthermore, the excessive ZnO and Zn salts produced from ZnO could be easily removed by filtration, which may be convenient for the purification process.
  • 加载中
    1. [1]

      (a) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Blackwell Publishing, Chichester, 2009.
      (b) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
      (c) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
      (d) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.

    2. [2]

      (a) McDonald, I. A.; Lacoste, J. M.; Bey, P.; Palfreyman, M. G.; Zreika, M. J. Med. Chem. 1985, 28, 186.
      (b) Weintraub, P. M.; Holland, A. K.; Gates, C. A.; Moore, W. R.; Resvick, R. J.; Bey, P.; Peet, N. P. Bioorg. Med. Chem. 2003, 11, 427.
      (c) Altenburger, J.-M.; Lassalle, G. Y.; Matrougui, M.; Galtier, D.; Jetha, J.-C.; Bocskei, Z.; Berry, C. N.; Lunven, C.; Lorrain, J.; Herault, J.-P.; Schaeffer, P.; O'Connor, S. E.; Herbert, J.-M. Bioorg. Med. Chem. 2004, 12, 1713.

    3. [3]

      (a) Nguyen, B. V.; Burton, D. J. J. Org. Chem. 1997, 62, 7758.
      (b) Yokota, M.; Fujita, D.; Ichikawa, J. Org. Lett. 2007, 9, 4639.
      (c) Qiao, Y.; Si, T.; Yang, M.-H.; Altman, R. A. J. Org. Chem. 2014, 79, 7122.

    4. [4]

      (a) Tozer, M. J.; Herpin, T. F. Tetrahedron 1996, 52, 8619.
      (b) Burton, D.; Yang, Z.-Y.; Qiu, W. Chem. Rev. 1996, 96, 1641.
      (c) Ichikawa, J. J. Fluorine Chem. 2000, 105, 257.
      (d) Chelucci, G. Chem. Rev. 2012, 112, 1344.

    5. [5]

      (a) Mae, M.; Amii, H.; Uneyama, K. Tetrahedron Lett. 2000, 41, 7893.
      (b) Amii, H.; Kobayashi, T.; Terasawa, H.; Uneyama, K. Org. Lett. 2001, 3, 3103.
      (c) Ichikawa, J.; Ishibashi, Y.; Fukui, H. Tetrahedron Lett. 2003, 44, 707.
      (d) Ichikawa, J.; Fukui, H.; Ishibashi, Y. J. Org. Chem. 2003, 68, 7800.
      (e) Miura, T.; Ito, Y.; Murakami, M. Chem. Lett. 2008, 37, 1006.

    6. [6]

      (a) Crowley, P. J.; Howarth, J. A.; Owton, W. M.; Percy, J. M.; Stansfield, K. Tetrahedron Lett. 1996, 37, 5975.
      (b) Goegsig, T. M.; Soebjerg, L. S.; Lindhardt, A. T.; Jensen, K. L.; Skrydstrup, T. J. Org. Chem. 2008, 73, 3404.

    7. [7]

      (a) Prakash, G. K. S.; Wang, Y.; Hu, J.; Olah, G. A. J. Fluorine Chem. 2005, 126, 1361.
      (b) Zhao, Y.; Huang, W.; Zhu, L.; Hu, J. Org. Lett. 2010, 12, 1444.
      (c) Wang, X.-P.; Lin, J.-H.; Xiao, J.-C.; Zheng, X. Eur. J. Org. Chem. 2014, 928.
      (d) Cao, C.-R.; Ou, S.; Jiang, M.; Liu, J.-T. Tetrahedron Lett. 2017, 58, 482.

    8. [8]

      (a) Edwards, M. L.; Stemerick, D. M.; Jarvi, E. T.; Matthews, D. P.; McCarthy, J. R. Tetrahedron Lett. 1990, 31, 5571.
      (b) Piettre, S. R.; Cabanas, L. Tetrahedron Lett. 1996, 37, 5881.

    9. [9]

      (a) Serafinowski, P. J.; Brown, C. A. Tetrahedron 2000, 56, 333.
      (b) Nowak, I.; Robins, M. Org. Lett. 2005, 7, 721.
      (c) Thomoson, C. S.; Martinez, H.; Dolbier, W. R., Jr. J. Fluorine Chem. 2013, 150, 53.
      (d) Wang, F.; Li, L.; Ni, C.; Hu, J. Beilstein J. Org. Chem. 2014, 10, 344.

    10. [10]

      (a) Herkes, F.; Burton, D. J. Org. Chem. 1967, 1311.
      (b) Zheng, J.; Cai, J.; Lin, J.-H.; Guo, Y.; Xiao, J.-C. Chem. Commun. 2013, 49, 7513.

    11. [11]

      Li, Q.; Lin, J.-H.; Deng, Z.-Y.; Zheng, J.; Cai, J.; Xiao, J.-C. J. Fluorine Chem. 2014, 163, 38.  doi: 10.1016/j.jfluchem.2014.04.011

    12. [12]

      (a) Naae, D. G.; Burton, D. J. J. Fluorine Chem. 1971, 1, 123.
      (b) Naae, D. G.; Burton, D. J. Synth. Commun. 1973, 3, 197.

    13. [13]

      Zheng, J.; Lin, J.-H.; Cai, J.; Xiao, J.-C. Chem.-Eur. J. 2013, 19, 15261.  doi: 10.1002/chem.201303248

    14. [14]

      (a) Deng, X.-Y.; Lin, J.-H.; Zheng, J.; Xiao, J.-C. Chem. Commun. 2015, 51, 8805.
      (b) Zheng, J.; Lin, J.-H.; Deng, X.-Y.; Xiao, J.-C. Org. Lett. 2015, 17, 532.
      (c) Zheng, J.; Lin, J.-H.; Yu, L.-Y.; Wei, Y.; Zheng, X.; Xiao, J.-C. Org. Lett. 2015, 17, 6150.
      (d) Zheng, J.; Wang, L.; Lin, J.-H.; Xiao, J.-C.; Liang, S. H. Angew. Chem., Int. Ed. 2015, 54, 13236.
      (e) Zheng, J.; Cheng, R.; Lin, J.-H.; Yu, D. H.; Ma, L.; Jia, L.; Zhang, L.; Wang, L.; Xiao, J.-C.; Liang, S. H. Angew. Chem., Int. Ed. 2017, 56, 3196.
      (f) Yu, J.; Lin, J.-H.; Xiao, J.-C. Angew. Chem., Int. Ed. 2017, 56, 16669.

    15. [15]

      Deng, Z.; Lin, J.-H.; Cai, J.; Xiao, J.-C. Org. Lett. 2016, 18, 3206.  doi: 10.1021/acs.orglett.6b01425

    16. [16]

      (a) Deng, Z.; Lin, J.-H.; Xiao, J.-C. Nat. Commun. 2016, 7, 10337.
      (b) Deng, Z.; Liu, C.; Zeng, X.-L.; Lin, J.-H.; Xiao, J.-C. J. Org. Chem. 2016, 81, 12084.

    17. [17]

      Nenajdenko, V. G.; Varseev, G. N.; Korotchenko, V. N.; Shastin, A. V.; Balenkova, E. S. J. Fluorine Chem. 2003, 124, 115-118.  doi: 10.1016/S0022-1139(03)00199-4

    18. [18]

      Ichitsuka, T.; Takanohashi, T.; Fujita, T.; Ichikawa, J. J. Fluorine Chem. 2015, 170, 29.  doi: 10.1016/j.jfluchem.2014.12.003

  • 加载中
    1. [1]

      Jiao WangShuang-Yan LangZhen-Zhen ShenGui-Xian LiuJian-Xin TianYuan LiRui-Zhi LiuRui WenIn situ imaging of the interfacial processes manipulated by salt concentration on zinc anodes in zinc metal batteries. Chinese Chemical Letters, 2025, 36(4): 109815-. doi: 10.1016/j.cclet.2024.109815

    2. [2]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    3. [3]

      Kun TangFen SuShijie PanFengfei LuZhongfu LuoFengrui CheXingxing WuYonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495

    4. [4]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    5. [5]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    6. [6]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    7. [7]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    8. [8]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    9. [9]

      Hua LiuJian ZhaoQi LiXiang-Yu ZhangZhi-Wei ZhengKun HuangDa-Bin QinBin Zhao . Indium-captured zirconium-porphyrin frameworks displaying rare multi-selectivity for catalytic transfer hydrogenation of aldehydes and ketones. Chinese Chemical Letters, 2025, 36(6): 110593-. doi: 10.1016/j.cclet.2024.110593

    10. [10]

      Mengyu WuKewei RenChengyu ZouJiacheng ChenRui MaChuan ZhuChao Feng . A general synthesis of gem–difluorobicyclo[2.1.1]hexanes. Chinese Chemical Letters, 2025, 36(5): 110213-. doi: 10.1016/j.cclet.2024.110213

    11. [11]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    12. [12]

      Minjun YinYuhui LinManli ZhuangWei XiaoJie Wu . Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide. Chinese Chemical Letters, 2025, 36(3): 109926-. doi: 10.1016/j.cclet.2024.109926

    13. [13]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    14. [14]

      Yuhao ZhouSiyuan WuXiaozhe RenHongjin LiShu LiTianying Yan . Effects of salt fraction on the Na+ transport in salt-in-ionic liquid electrolytes. Chinese Chemical Letters, 2025, 36(6): 110048-. doi: 10.1016/j.cclet.2024.110048

    15. [15]

      Zili Ma Zeyu Li Jun Lv . Shortening the formation time of oxide thin film photoelectrodes from hours to seconds. Chinese Journal of Structural Chemistry, 2025, 44(4): 100450-100450. doi: 10.1016/j.cjsc.2024.100450

    16. [16]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    17. [17]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    18. [18]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    19. [19]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    20. [20]

      Wenfeng ShaoChuanlin LiChenggang WangGuangsen DuShunshun ZhaoGuangmeng QuYupeng XingTianshuo GuoHongfei LiXijin Xu . Stabilization of zinc anode by trace organic corrosion inhibitors for long lifespan. Chinese Chemical Letters, 2025, 36(3): 109531-. doi: 10.1016/j.cclet.2024.109531

Metrics
  • PDF Downloads(12)
  • Abstract views(1019)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return