Citation: Su Lin, Hou Wei. Progress in the Synthesis of Cinnoline Derivatives[J]. Chinese Journal of Organic Chemistry, ;2019, 39(2): 363-376. doi: 10.6023/cjoc201806021 shu

Progress in the Synthesis of Cinnoline Derivatives

  • Corresponding author: Hou Wei, houwei@zjut.edu.cn
  • Received Date: 15 June 2018
    Revised Date: 2 August 2018
    Available Online: 10 February 2018

    Fund Project: the China Postdoctoral Science Foundation 2017M612024Project supported by the Scientific Start-Up Funding from Zhejiang University of Technology (No. 2017116002229) and the China Postdoctoral Science Foundation (No. 2017M612024)the Scientific Start-Up Funding from Zhejiang University of Technology 2017116002229

Figures(15)

  • Cinnolines are "privileged scaffold" in new material and drug research, and development for their extensive biological activities such as anticancer, antibacterial, antiviral, anti-inflammatory, and sedative activities and good electron-accepting ability. As a result, the development of new synthetic routes to this important structure has been actively investigated in recent years. Especially, the C-H functionalization strategy has promoted the development of new methods greatly. The recent advances of the synthetic methods to cinnolines based on different synthetic strategies and raw materials are reviewed.
  • 加载中
    1. [1]

      Bekhit, A. A. Boll. Chim. Farm. 2001, 140, 243.

    2. [2]

      Lewgowd, W.; Stanczak, A. Arch. Pharm. Chem. Life Sci. 2007, 340, 65.  doi: 10.1002/(ISSN)1521-4184

    3. [3]

      Ruchelman, A. L.; Singh, S. K.; Ray, A.; Wu, X.; Yang, J.-M.; Zhou, N.; Liu, A.; Liu, L.-F.; LaVoie, E. J. Bioorg. Med. Chem. 2004, 12, 795.  doi: 10.1016/j.bmc.2003.10.061

    4. [4]

      Barraja, P.; Diana, P.; Lauria, A.; Passannanti, A.; Almerico, A. M.; Minnei, C.; Longu, S.; Cogiu, D.; Musiu, C.; La Colla, P. Bioorg. Med. Chem. 1999, 7, 1591.  doi: 10.1016/S0968-0896(99)00096-6

    5. [5]

      Vaillancourt, V. A.; Larsen, S. D.; Nair, S. K. WO 0170706, 2001[Chem. Abstr. 2001, 135, 257250]

    6. [6]

      (a) Siegfried, A.-G. FR 1393596, 1965 [Chem. Abstr. 1965, 63, 2983].
      (b) Schatz, F.; Wagner-Jauregg, T. Helv. Chim. Acta 1968, 51, 1919.

    7. [7]

      Stanczak, A.; Lewgowd, W.; Ochocki, Z.; Pakulska, W.; Szadowska, A. Pharmazie 1997, 52, 91.
       

    8. [8]

      Shen, Y.; Shang, Z.; Yang, Y.; Zhu, S.; Qian, X.; Shi, P.; Zheng, J.; Yang, Y. J. Org. Chem. 2015, 80, 5906.  doi: 10.1021/acs.joc.5b00242

    9. [9]

      Tsuji, H.; Yokoi, Y.; Sato, Y.; Tanaka, H.; Nakamura, E. Chem. Asian J. 2011, 6, 2005.  doi: 10.1002/asia.201100234

    10. [10]

      Chen, J.-C.; Wu, H.-C.; Chiang, C.-J.; Peng, L.-C.; Chen, T.; Xing, L.; Liu, S.-W. Polymer 2011, 52, 6011.  doi: 10.1016/j.polymer.2011.10.059

    11. [11]

      (a) Leonard, N. J. Chem. Rev. 1945, 37, 269.
      (b) Vinogradova, O. V.; Balova, I. A. Chem. Heterocycl. Compd. 2008, 44, 501.
      (c) Han, Y.-T.; Jung, J.-W.; Kim, N.-J. Curr. Org. Chem. 2017, 21, 1265.
      (d) Mathew, T.; Papp, A. A.; Paknia, F.; Fustero, S.; Prakash, G. K. S. Chem. Soc. Rev. 2017, 46, 3060.

    12. [12]

      Richter, V. V. Berichte. 1883, 16, 677.

    13. [13]

      Senadi, G. C.; Gore, B.; Hu, W.-P.; Wang, J.-J. Org. Lett. 2016, 18, 2890.  doi: 10.1021/acs.orglett.6b01207

    14. [14]

      (a) Widman, O. Berichte 1884, 17, 722.
      (b) Widman, O. Berichte 1909, 42, 4216.
      (c) Stoermer, R.; Fincke, H. Berichte 1909, 42, 3115.
      (d) Stoermer, R.; Gaus, O. Berichte 1912, 45, 3104.
      (e) Pang, X.-B.; Zhao, L.-B.; Zhou, D.-G.; He, P.-Y.; An, Z.; Ni, J.-X.; Yan, R.-L. Org. Biomol. Chem. 2017, 15, 6318.

    15. [15]

      (a) Keneford, J. R.; Simpson, J. С. Е. J. Chem. Soc. 1947, 917.
      (b) Keneford, J. R.; Simpson, J. С. Е. J. Chem. Soc. 1948, 354.
      (c) Schofield, K.; Theobald, R. S. J. Chem. Soc. 1949, 2404.

    16. [16]

      (a) Hu, E.; Kunz, R. K.; Rumfelt, S.; Andrews, K. L.; Li, C.; Hitchcock, S. A.; Lindstrom, M.; Treanor, J. Bioorg. Med. Chem. Lett. 2012, 22, 6938.
      (b) Yang, H.; Murigi, F. N.; Wang, Z.-J.; Li, J.-F.; Jin, H.-J.; Tu, Z.-D. Bioorg. Med. Chem. Lett. 2015, 25, 919.
      (c) Hu, E.; Ma, J.; Biorn, C.; Lester-Zeiner, D.; Cho, R.; Rumfelt, S.; Kunz, R. K.; Nixey, T.; Michelsen, K.; Miller, S. J. Med. Chem. 2012, 55, 4776.

    17. [17]

      Hennequin, L. F.; Thomas, A. P.; Johnstone, C.; Stokes, E. S. E.; Plé, P. A.; Lohmann, J. J. M.; Ogilvie, D. J.; Dukes, M.; Wedge, S. R.; Curwen, J. O.; Kendrew, J.; Brempt, C. L. J. Med. Chem. 1999, 42, 5369.  doi: 10.1021/jm990345w

    18. [18]

      (a) Senadi, G. C.; Gore, B. S.; Hu, W. P.; Wang, J. J. Org. Lett. 2016, 18, 2890.
      (b) Khaligh, N. G.; Mihankhah, T.; Johan, M. R.; Ching, J. J. Monatsh. Chem. 2018, 149, 1083.

    19. [19]

      (a) Neber, P. W.; Knoller, G.; Herrst, K.; Trissler, A. Liebigs Ann. Chem. 1929, 471, 113.
      (b) Alford, E. J.; Schofield, K. J. Chem. Soc. 1952, 2102.

    20. [20]

      Shvartsberg, M. S.; Ivanchikova, I. D. Tetrahedron Lett. 2000, 41, 771.  doi: 10.1016/S0040-4039(99)02151-6

    21. [21]

      Stefańska, B.; Arciemiuk, M.; Bontemps-Gracz, M. M.; Dzieduszycka, M.; Kupiec, A.; Martellib, S.; Borowskia, E. Bioorg. Med. Chem. 2003, 11, 561.  doi: 10.1016/S0968-0896(02)00425-X

    22. [22]

      (a) Gomaa, M. A. M. Tetrahedron Lett. 2003, 44, 3493.
      (b) Ryu, C. K.; Lee, J. Y. Bioorg. Med. Chem. Lett. 2006, 16, 1850.
      (c) Lambert, D. J.; Parikh, N.; Messham, S. J.; Edwards, G.; Truong, H. V.; Dempster, N. M.; Drew, M. G. B.; Nahar, L.; Sarker, S. D.; Ismail, F. M. D. Tetrahedron Lett. 2015, 56, 6980.

    23. [23]

      (a) Barber, H. J.; Washbourn, K.; Wragg, W. R.; Lunt, E. J. Chem. Soc. 1961, 2828.
      (b) Barber, H. J.; Lunt, E. J. Chem. Soc., Perkin Trans. 1 1968, 9, 1156.

    24. [24]

      Al-Awadi, N. A.; Elnagdi, M. H.; Ibrahim, Y. A.; Kaul, K.; Kumar, A. Tetrahedron 2001, 57, 1609.  doi: 10.1016/S0040-4020(00)01141-8

    25. [25]

      Liu, X.-F.; Chang, H.-F.; Schmiesing, R. J.; Wesolowski, S. S.; Knappenberger, K. S.; Arriza, J. L.; Chapdelaine, M. J. Bioorg. Med. Chem. 2010, 18, 8374.  doi: 10.1016/j.bmc.2010.09.058

    26. [26]

      Awad, E. D.; El-Abadelah, M. M.; Matar, S.; Zihlif, M. A.; Naffa, R. G.; AlMomani, E. Q. Molecules 2012, 17, 227.
       

    27. [27]

      Alhambra, C.; Becker, C.; Blake, T.; Chang, A. H.; Damewood, J. R.; Daniels, T.; Dembofsky, B. T.; Gurley, D. A.; Hall, J. E.; Herzog, K. J.; Horchler, C. L.; Ohnmacht, C. J.; Schmiesing, R. J.; Dudley, A.; Ribadeneira, M. D.; Knappenberger, K. S.; Maciag, C.; Stein, M. M.; Chopra, M.; Liu, X.-F.; Christian, E. P.; Arriza, J. L.; Chapdelaine, M. J. Bioorg. Med. Chem. 2011, 19, 2927.  doi: 10.1016/j.bmc.2011.03.035

    28. [28]

      Vinogradova, O. V.; Balova, I. A.; Popik, V. V. J. Org. Chem. 2011, 76, 6937.  doi: 10.1021/jo201148h

    29. [29]

      Bräse, S.; Dahmen, S.; Heuts, J. Tetrahedron Lett. 1999, 40, 6201.  doi: 10.1016/S0040-4039(99)01166-1

    30. [30]

      (a) Kimball, D. В.; Hayes, A. G.; Haley, M. M. Org. Lett. 2000, 2, 3825.
      (b) Kimball, D. В.; Weakly, T. J. R.; Herges, R.; Haley, M. M. J. Am. Chem. Soc. 2002, 124, 1572.
      (c) Kimball, D. В.; Weakly, T. J. R.; Herges, R.; Hayes, A. G.; Haley, M. M. J. Am. Chem. Soc. 2002, 124, 13463.
      (d) Kimball, D. В.; Weakly, T. J. R.; Haley, M. M. J. Org. Chem. 2002, 67, 6395.
      (e) Kimball, D. В.; Haley, M. M. Angew. Chem., Int. Ed. 2002, 41, 3338.
      (f) Young, B. S.; Marshall, J. L.; MacDonald, E.; Vonnegut, C. L.; Haley, M. M. Chem. Commun. 2012, 48, 5166.
      (g) Young, B. S.; Köhler, F.; Herges, R.; Haley, M. M. J. Org. Chem. 2011, 76, 8483.

    31. [31]

      (a) Ross, S. D.; Kuntz, I. J. Am. Chem. Soc. 1952, 74, 1297.
      (b) Corbett, J. F.; Holt, P. F. J. Chem. Soc. 1960, 3646.

    32. [32]

      Hou, Z.; Fujiwara, Y.; Taniguchi, H. J. Org. Chem. 1988, 53, 311.

    33. [33]

      Dehghanpour, S.; Afshariazar, F.; Assoud, J. Polyhedron 2012, 35, 69.  doi: 10.1016/j.poly.2011.12.041

    34. [34]

      (a) Braithwaite, R. S. W.; Holt, P. F.; Hughes, A. N. J. Chem. Soc. 1958, 4073.
      (b) Barton, J. W.; Rowe, D. J. Tetrahedron Lett. 1983, 24, 299.
      (c) Barton, J. W.; Sheperd, M. K. Tetrahedron Lett. 1984, 25, 4967.
      (d) Benin, V.; Kaszynski, P. J. Org. Chem. 2000, 65, 6388.

    35. [35]

      (a) Bjorsvik, H.-R.; Gonzalez, R. R.; Liguori, L. J. Org. Chem. 2004, 69, 7720.
      (b) Elumalai, V.; Bjorsvik, H.-R. ChemistrySelect 2018, 3, 2092.

    36. [36]

      Corbett, J. F.; Holt, P. F. J. Chem. Soc. 1961, 3695.

    37. [37]

      Caronna, T.; Fontana, F.; Mele, A.; Sora, I. N.; Panzeri, W.; Viganò, L. Synthesis 2008, 413.

    38. [38]

      Takeda, Y.; Okazaki, M.; Maruoka, Y.; Minakata, S. Beilstein J. Org. Chem. 2015, 11, 9.  doi: 10.3762/bjoc.11.2

    39. [39]

      Lee, D. S.; Chatterjee, T; Ban, J.; Rhee, H.; Cho, E. J. ChemistrySelect 2018, 3, 2092.  doi: 10.1002/slct.201800278

    40. [40]

      (a) Holt, P. F.; Went, C. W. J. Chem. Soc. 1963, 4099.
      (b) Al-Mousawi, S. M.; El-Apasery, M. A. Molecules 2012, 17, 6547.
      (c) Al-Awadi, N. A.; Ibrahim, Y. A.; Elnagdi, M. H.; Adam, A. Y.; John, E. J. Anal. Appl. Pyrol. 2017, 124, 602.

    41. [41]

      Wimmer, R.; Müller, N. Monatsh. Chem. 1998, 129, 1161.

    42. [42]

      Sharma, M.; Maheshwari, A.; Bindal, N. J. Heterocycl. Chem. 2013, 50, 116.  doi: 10.1002/jhet.1086

    43. [43]

      Swenton, J. S.; Ikeler, T, J.; Williams, B. H. J. Am. Chem. Soc. 1970, 92, 3103.  doi: 10.1021/ja00713a031

    44. [44]

      Yu, Y.; Singh, S. K.; Liu, A.; Li, T.-K.; Liu, L. F.; LaVoie, E. J. Bioorg. Med. Chem. 2003, 11, 1475.  doi: 10.1016/S0968-0896(02)00604-1

    45. [45]

      (a) Parrino, B.; Carbone, A.; Muscarella, M.; Spanò, V.; Montalbano, A.; Barraja, P.; Salvador, A.; Vedaldi, D.; Cirrincione, G.; Diana, P. J. Med. Chem. 2014, 57, 9495.
      (b) Shen, Y.; Zhang, Q.; Qian, X.; Yang, Y. Anal. Chem. 2015, 87, 1274.

    46. [46]

      Hasegawa, K.; Kimura, N.; Arai, S.; Nishida, A. J. Org. Chem. 2008, 73, 6363.  doi: 10.1021/jo8010864

    47. [47]

      Zhu, C.; Yamane, M. Tetrahedron 2011, 67, 4933.  doi: 10.1016/j.tet.2011.04.079

    48. [48]

      Ball, C. J.; Gilmore, J.; Willis, M. C. Angew. Chem., Int. Ed. 2012, 51, 5718.  doi: 10.1002/anie.201201529

    49. [49]

      Kumar, A.; Tiwari, D. K.; Sridhard, B.; Likhar, P. R. Org. Biomol. Chem. 2018, 16, 4840.  doi: 10.1039/C8OB01152D

    50. [50]

      Zhao, S.; Yu, R.; Chen, W.; Liu, M.; Wu, H. Org. Lett. 2015, 17, 2828.  doi: 10.1021/acs.orglett.5b01247

    51. [51]

      Jurberg, I. D.; Gagosz, F. J. Organomet. Chem. 2011, 696, 37.  doi: 10.1016/j.jorganchem.2010.06.017

    52. [52]

      Gogoi, P.; Gogoi, S. R.; Devi, N.; Barman, P. Synth. Commun. 2014, 44, 1142.  doi: 10.1080/00397911.2013.853799

    53. [53]

      Zhang, G.; Miao, J.; Zhao, Y.; Ge, H. Angew. Chem., Int. Ed. 2012, 51, 8318.  doi: 10.1002/anie.v51.33

    54. [54]

      Lan, C.; Tian, Z.; Liang, X.; Gao, M.; Liu, W.; An, Y.; Fu, W.; Jiao, G.; Xiao, J.; Xu, B. Adv. Synth. Catal. 2017, 359, 3735.  doi: 10.1002/adsc.v359.21

    55. [55]

      Fan, Z.; Wu, K.; Xing, L.; Yao, Q.; Zhang, A. Chem. Commun. 2014, 50, 1682.  doi: 10.1039/C3CC47989G

    56. [56]

      Reddy, B. V. S.; Reddy, C. R.; Reddy, M. R.; Yarlagadda, S.; Sridhar, B. Org. Lett. 2015, 17, 3730.  doi: 10.1021/acs.orglett.5b01717

    57. [57]

      Zhao, D.; Wu, Q.; Huang, X.; Song, F.; Lv, T.; You, J. Chem.-Eur. J. 2013, 19, 6239.  doi: 10.1002/chem.201300155

    58. [58]

      Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908.  doi: 10.1021/ja102571b

    59. [59]

      (a) Muralirajan, K. Cheng, C.-H. Chem.-Eur. J. 2013, 19, 6198.
      (b) Prakash, S.; Muralirajan, K.; Cheng, C.-H. Angew. Chem., Int. Ed. 2016, 55, 1844.

    60. [60]

      Xing, L.; Fan, Z.; Hou, C.; Yong, G.; Zhang, A. Adv. Synth. Catal. 2014, 356, 972.  doi: 10.1002/adsc.v356.5

    61. [61]

      Rajkumar, S.; Savarimuthu, S. A.; Kumaran, R. S.; Nagarajad, C. M.; Gandhi, T. Chem. Commun. 2016, 52, 2509.  doi: 10.1039/C5CC09347C

    62. [62]

      Mayakrishnan, S.; Arun, Y.; Balachandran, C.; Emi, N.; Muralidharana, D.; Perumal, P. T. Org. Biomol. Chem. 2016, 14, 1958.  doi: 10.1039/C5OB02045J

    63. [63]

      (a) Shi, J.; Zhou, J.; Yan, Y.; Jia, J.; Liu, X.; Song, H.; Xu, H. E.; Yi, W. Chem. Commun. 2015, 51, 668.
      (b) Lv, H.; Xu, W. L.; Lin, K.; Shi, J.; Yi, W. Eur. J. Org. Chem. 2016, 5637.

    64. [64]

      Son, J.-Y.; Kim, S.; Jeon, W. H.; Lee, P. H. Org. Lett. 2015, 46, 2518.

    65. [65]

      Sharma, S.; Han, S. H.; Han, S.; Ji, W.; Oh, J.; Lee, S.-Y.; Oh, J. S.; Jung, Y. H.; Kim, I. S. Org. Lett. 2015, 46, 2852.

    66. [66]

      Sun, P.; Wu, Y.; Huang, Y.; Wu, X.; Xu, J.; Yao, H.; Lin, A. Org. Chem. Front. 2016, 3, 91.  doi: 10.1039/C5QO00331H

    67. [67]

      Song, C.; Yang, C.; Zhang, F.; Wang, J.; Zhu, J. Org. Lett. 2016, 18, 4510.  doi: 10.1021/acs.orglett.6b02103

    68. [68]

      Li, P.; Xu, X.; Chen, J.; Yao, H.; Lin, A. Org. Chem. Front. 2018, 5, 1777.  doi: 10.1039/C8QO00209F

    69. [69]

      Chen, X.; Zheng, G.; Song, G.; Li, X. Adv. Synth. Catal. 2018, 360, 2836.  doi: 10.1002/adsc.v360.15

    70. [70]

      Yang, C.; Song, F.; Chen, J.; Huang. Y. Adv. Synth. Catal. 2017, 359, 3496.  doi: 10.1002/adsc.v359.20

    71. [71]

      (a) Kiselyov, A. S. Tetrahedron Lett. 1995, 36, 1383.
      (b) Kiselyov, A. S.; Dominguez, C. Tetrahedron Lett. 1999, 40, 5111.

    72. [72]

      (a) Kobayashi, S.; Furuya, T.; Otani, T.; Saito, T. Tetrahedron 2008, 64, 9705.
      (b) Süennemann, H. W.; Banwell, M. G.; de Meijere, A. Chem.-Eur. J. 2008, 14, 7236.
      (c) Kobayashi, S.; Furuya, T.; Otani, T.; Saito, T. Tetrahedron Lett. 2008, 49, 4513.
      (d) Alajarín, M.; Cabrera, J.; Pastor, A.; Sánchez-Andrada, P.; Bautista, D. J. Org. Chem. 2008, 73, 963.

    73. [73]

      Alajarin, M.; Bonillo, B.; Marin-Luna, M.; Vidal, A.; Orenes, R.-A. J. Org. Chem. 2009, 74, 3558.  doi: 10.1021/jo900304a

    74. [74]

      Chen, D.; Yang, C.; Xie, Y.; Ding, J. Heterocycles 2009, 77, 273.  doi: 10.3987/COM-08-S(F)7

    75. [75]

      Li, S.; Zhao, Y.; Wang, K.; Gao, Y.; Han, J.; Cui, B.; Gong, P. Bioorg. Med. Chem. 2013, 21, 2843.  doi: 10.1016/j.bmc.2013.04.013

    76. [76]

      Kandimalla, S. R.; Sabitha, G. RSC Adv. 2016, 6, 67086.  doi: 10.1039/C6RA15418B

    77. [77]

      Jiao, J.; Xu, L.; Zheng, W.; Xiong, P.; Hu, M.-L.; Tang, R.-Y. Synthesis 2017, 49, 1839.

    78. [78]

      Suh, S.-E.; Barros, S. A.; Chenoweth, D. M. Chem. Sci. 2015, 6, 5128.  doi: 10.1039/C5SC01726B

    79. [79]

      Shu, W.-M.; Ma, J.-R.; Zheng, K.-L.; Wu, A.-X. Org. Lett. 2016, 18, 196.  doi: 10.1021/acs.orglett.5b03236

    80. [80]

      Guo, S.; Zhai, J.; Fan, X. Org. Biomol. Chem. 2017, 15, 1521.  doi: 10.1039/C6OB02699K

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    4. [4]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    5. [5]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    8. [8]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    9. [9]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    10. [10]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    11. [11]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    12. [12]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    16. [16]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    17. [17]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    18. [18]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    19. [19]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    20. [20]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

Metrics
  • PDF Downloads(37)
  • Abstract views(1337)
  • HTML views(181)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return