Citation: Li Xiaojun, Zhang Wanbin, Gao Shuanhu. Total Synthesis of Complex Natural Products: Combination of Chemical Synthesis and Biosynthesis Strategies[J]. Chinese Journal of Organic Chemistry, ;2018, 38(9): 2185-2198. doi: 10.6023/cjoc201806019 shu

Total Synthesis of Complex Natural Products: Combination of Chemical Synthesis and Biosynthesis Strategies

  • Corresponding author: Zhang Wanbin, wanbin@sjtu.edu.cn Gao Shuanhu, shgao@chem.ecnu.edu.cn
  • Received Date: 14 June 2018
    Revised Date: 9 July 2018
    Available Online: 16 September 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21772044), the National Young Top-Notch Talent Support Program of Shanghai Academic/Technology Research Leader (No. 18XD1401500) and the Fundamental Research Funds for the Central Universitiesthe National Young Top-Notch Talent Support Program of Shanghai Academic/Technology Research Leader 18XD1401500the National Natural Science Foundation of China 21772044

Figures(18)

  • Total synthesis of natural products is one of the most important field in organic chemistry. Natural products and derivatives, containing complex structures and potential biological activities, are also indispensable sources of drug discovery. The total synthesis of natural products through the combination of chemical synthesis and biosynthesis strategies is reviewed. The main content includes the chemical and biosynthetic studies of artemisinin, spinosyn A, myceliothernophin E and equisetin.
  • 加载中
    1. [1]

      Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2016, 79, 629.  doi: 10.1021/acs.jnatprod.5b01055

    2. [2]

      Wöhler, F.; Ueber K. B.; Des, H. Ann. Phys. 1828, 88, 253.  doi: 10.1002/(ISSN)1521-3889

    3. [3]

      (a) Nicolaou, K. C.; Vourloumis, D.; Winssinger, N.; Baran, P. S. Angew. Chem., Int. Ed. 2000, 39, 44.
      (b) Nicolaou, K. C. J. Org. Chem. 2009, 74, 951.
      (c) Hoffmann, R. W. Angew. Chem., Int. Ed. 2013, 52, 123.
      (d) Keasling, J. D.; Mendoza, A.; Baran, P. S. Nature 2012, 492, 188.

    4. [4]

      (a) Aicher, T. D.; Buszek, K. R.; Fang, F. G.; Forsyth, C. J.; Jung, S. H.; Kishi, Y.; Matelich, M. C.; Scola, P. M.; Spero, D. M.; Yoon, S. K. J. Am. Chem. Soc. 1992, 114, 3162.
      (b) Duan, J. J.-W.; Kishi, Y. Tetrahedron Lett. 1993, 34, 7541.
      (c) Stamos, D. P.; Kishi, Y. Tetrahedron Lett. 1996, 37, 8643.
      (d) Stamos, D. P.; Sean, S. C.; Kishi, Y. J. Org. Chem. 1997, 62, 7552.
      (e) Namba, K.; Kishi, Y. J. Am. Chem. Soc. 2005, 127, 15382.
      (f) Dong, C.-G.; Henderson, J. A.; Kaburagi, Y.; Sasaki, T.; Kim, D.-S.; Kim, J. T.; Urabe, D.; Guo, H.; Kishi, Y. J. Am. Chem. Soc. 2009, 131, 15642.
      (g) Yang, Y.-R.; Kim, D.-S.; Kishi, Y. Org. Lett. 2009, 20, 4516.
      (h) Liu, L.; Henderson, J. A.; Yamamoto, A.; Bremond, P.; Kishi, Y. Org. Lett. 2012, 14, 2262.
      (i) Shan, M.; Kishi, Y. Org. Lett. 2012, 14, 660.
      (j) Lee, J. H.; Li, Z.; Osawa, A.; Kishi, Y. J. Am. Chem. Soc. 2016, 138, 16248.

    5. [5]

      (a) Kingston, D. G. Phytochemistry 2007, 68, 1844.
      (b) Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.; McPhail, A. T. J. Am. Chem. Soc. 1971, 93, 2325.

    6. [6]

      Ajikumar, P. K.; Xiao, W.-H.; Tyo, K. E. J.; Wang, Y.; Simeon, F.; Leonard, E.; Mucha, O.; Phon, T. H.; Pfeifer, B.; Stephanopoulo, G. Science 2010, 330, 70.  doi: 10.1126/science.1191652

    7. [7]

      (a) World Health Organization 18th WHO Essential Medicines List, Geneva, Switzerland, 2013.
      (b) Seya, M. J.; Gelders, S. F.; Achara, O. U.; Milani, B.; Scholten, W. K. J. Pain Palliat. Care Pharmacother. 2011, 25, 6.
      (c) International Narcotics Control Board (INCB) Narcotic Drugs: Estimated World Requirements for 2015——Statistics for 2013, New York, 2014.

    8. [8]

      Galanie, S.; Thodey, K.; Trenchard, I. J.; Interrante, M. F.; Smolke, C. D. Science 2015, 349, 1095.  doi: 10.1126/science.aac9373

    9. [9]

      Klayman, D. L. Science 1985, 228, 104.

    10. [10]

      Davies, E. E. Ann. Trop. Med. Parasitol. 1975, 69, 147-154.  doi: 10.1080/00034983.1975.11686996

    11. [11]

      Theakston, R. D. G. Life Sci. 1969, 8, 521-529.  doi: 10.1016/0024-3205(69)90251-3

    12. [12]

      Liu, C. C.; Wang, Y. C.; Ouyang, F. Prog. Chem. 1999, 11, 41.  doi: 10.3321/j.issn:1005-281X.1999.01.006

    13. [13]

    14. [14]

      (a) Schmid, G.; Hofheinz, W. J. Am. Chem. Soc. 1983, 105, 624.
      (b) Yadav, J. S.; Babu, R. S.; Sabitha, G. Tetrahedron Lett. 2003, 44, 387.
      (c) Yadav, J. S.; Thirupathaiah, B.; Srihari, P. Tetrahedron 2010, 66, 2005.
      (d) Zhu, C.; Cook, S. P. J. Am. Chem. Soc. 2012, 134, 13577.

    15. [15]

    16. [16]

    17. [17]

      Liu, D.; Zhang, W. Chin. Sci. Bull. 2017, 62, 1997(in Chinese).
       

    18. [18]

    19. [19]

      (a) Martin, V. J. J.; Pitera, D. J.; Withers, S. T.; Newman, J. D.; Keasling, J. D. Nat. Biotechnol. 2003, 21, 796.
      (b) Brown, G. D. Molecules 2010, 15, 7603.
      (c) Tsuruta, H.; Paddon, C. J.; Eng, D.; Lenihan, J. R.; Horning, T.; Anthony, L. C.; Regentin, R.; Keasling, J. D.; Renninger, N. S.; Newman, J. D. PLoS One 2009, 4, e4489.
      (d) Ro, D.-K.; Paradise, E. M.; Ouellet, M.; Fisher, K. J.; Newman, K. L.; Ndungu, J. M.; Ho, K. A.; Eachus, R. A.; Ham, T. S.; Kirby, J.; Chang, M. C. Y.; Withers, S. T.; Shiba, Y.; Sarpong, R.; Keasling, J. D. Nature 2006, 440, 940.
      (e) Westfall, P. J.; Pitera, D. J.; Lenihan, J. R.; Eng, D.; Woolard, F. X.; Regentin, R.; Horning, T.; Tsuruta, H.; Melis, D. J.; Owens, A.; Fickes, S.; Diola, D.; Benjamin, K. R.; Keasling, J. D.; Leavell, M. D.; McPhee, D. J.; Renninger, N. S.; Newman, J. D.; Paddon, C. J. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, E111.
      (f) Bouwmeester, H. J.; Wallaart, T. E.; Janssen, M. H. A.; Loo, B. V.; Jansen, B. J. M.; Posthumus, M. A.; Schmidt, C. O.; De Kraker, J.-W.; Kö nig, W. A.; Franssen, M. C. R. Phytochemistry 1999, 52, 843.
      (g) Mercke, P.; Bengtsson, M.; Bouwmeester, H. J.; Posthumus, M. A.; Brodelius, P. E. Arch. Biochem. Biophys. 2000, 381, 173.
      (h) Teoh, K. H.; Polichuk, D. R.; Reed, D. W.; Covello, P. S. Botany 2009, 87, 635.
      (i) Paddon, C. J.; Westfall, P. J.; Pitera, D. J.; Benjamin, K.; Fisher, K.; McPhee, D.; Leavell, M. D.; Tai, A.; Main, A.; Eng, D.; Polichuk, D. R.; Teoh, K. H.; Reed, D. W.; Treynor, T.; Lenihan, J.; Jiang, H.; Fleck, M.; Bajad, S.; Dang, G.; Dengrove, D.; Diola, D.; Dorin, G.; Ellens, K. W.; Fickes, S.; Galazzo, J.; Gaucher, S. P.; Geistlinger, T.; Henry, R.; Hepp, M.; Horning, T.; Iqbal, T.; Kizer, L.; Lieu, B.; Melis, D.; Moss, N.; Regentin, R.; Secrest, S.; Tsuruta, H.; Vazquez, R.; Westblade, L. F.; Xu, L.; Yu, M.; Zhang, Y.; Zhao, L.; Lievense, J.; Covello, P. S.; Keasling, J. D.; Reiling, K. K.; Renninger, N. S.; Newman, J. D. Nature 2013, 496, 528.

    20. [20]

      (a) Acton, N.; Roth, R. J. J. Nat. Prod. 1989, 52, 1183.
      (b) Acton, N.; Roth, R. J. J. Org. Chem. 1992, 57, 3610.
      (c) Haynes, R. K.; Vonwiller, S. C. J. Chem. Soc., Chem. Commun. 1990, 451.
      (d) Sy, L.-K.; Brown, G. D. Tetrahedron 2002, 58, 897.

    21. [21]

      (a) Zhang, W.; Liu, D.; Yuan, Q. CN 102718773, 2012.
      (b) Li, J.; Shen, J.; Xia, C.; Wang, Y.; Liu, D.; Zhang, W. Org. Lett. 2016, 18, 2122.

    22. [22]

      (a) Sparks, T. C.; Crouse, G. D.; Durst, G. Pest Manage. Sci. 2001, 57, 896.
      (b) Kirst, H. A. J. Antibiot. 2010, 63, 101.
      (c) Kirst, H. A.; Michel, K. H.; Martin, J. W.; Creemer, L. C.; Chio, E. H.; Yao, R. C.; Nakatsukasa, W. M.; Boeck, L. D.; Occolowitz, J. L.; Paschal, J. W.; Deeter, J. B.; Jones, N. D.; Thompson, G. D. Tetrahedron Lett. 1991, 32, 4839.

    23. [23]

      Evans, D. A.; Black, W. C. J. Am. Chem. Soc. 1993, 115, 4497.  doi: 10.1021/ja00064a011

    24. [24]

      (a) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127.
      (b) Evans, D. A.; Gage, J. R. Org. Synth. 1989, 68, 83.

    25. [25]

      (a) Hikota, M.; Tone, H.; Horita, K.; Yonemitsu, O. J. Org. Chem. 1990, 55, 7.
      (b) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989.

    26. [26]

      (a) Stille, J. K.; Groh, B. L. J. Am. Chem. Soc. 1987, 109, 813.
      (b) Stille, J. K.; Sweet, M. P. Tetrahedron Lett. 1989, 30, 3645.

    27. [27]

      Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem. Soc. 1988, 110, 1238.  doi: 10.1021/ja00212a037

    28. [28]

      (a) Paquette, L. A.; Gao, Z.; Ni, Z.; Smith, G. F. J. Am. Chem. Soc. 1998, 120, 2543.
      (b) Paquette, L. A.; Collado, I.; Purdie, M. J. Am. Chem. Soc. 1998, 120, 2553.

    29. [29]

      (a) Mukaiyama, T.; Kobayashi, S.; Shoda, S.-I. Chem. Lett. 1984, 907.
      (b) Evans, D. A.; Kaldor, S. W.; Jones, T. K.; Clardy, J.; Stout, T. J. J. Am. Chem. Soc. 1990, 112, 7001.

    30. [30]

      (a) Mergott, D. J.; Frank, S. A.; Roush, W. R. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 11955.
      (b) Winbush, S. M.; Mergott, D. J.; Roush, W. R. J. Org. Chem. 2008, 73, 1818.

    31. [31]

      (a) Boeckman, R. K. Jr.; Barta, T. E. J. Org. Chem. 1985, 50, 3421.
      (b) Roush, W. R.; Kageyama, M. Tetrahedron Lett. 1985, 26, 4327.
      (c) Roush, W. R.; Kageyama, M.; Riva, R.; Brown, B. B.; Warmus, J. S.; Moriarty, K. J. J. Org. Chem. 1991, 56, 1192.

    32. [32]

      (a) Wang, L. C.; Luis, A. L.; Agaplou, K.; Jang, H. Y.; Krische, M. J. J. Am. Chem. Soc. 2002, 124, 2402.
      (b) Frank, S. A.; Mergott, D. J.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 2404.

    33. [33]

      Bai, Y.; Shen, X. Y.; Li, Y.; Dai, M. J. J. Am. Chem. Soc. 2016, 138, 10838.  doi: 10.1021/jacs.6b07585

    34. [34]

      (a) Wilson, R. M.; Jen, W. S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 11616.
      (b) Lambert, T. H.; Danishefsky, S. J. J. Am. Chem. Soc. 2006, 128, 426.

    35. [35]

      (a) Davis, D. C.; Walker, K. L.; Hu, C.; Zare, R. N.; Waymouth, R. M.; Dai, M. J. J. Am. Chem. Soc. 2016, 138, 10693.
      (b) Bai, Y.; Davis, D. C.; Dai, M. J. Angew. Chem., Int. Ed. 2014, 53, 6519.
      (c) Gehrtz, P. H.; Hirschbeck, V.; Ciszek, B.; Fleischer, I. Synthesis 2016, 48, 1573.
      (d) Wu, X. F.; Neumann, H.; Beller, M. Chem. Rev. 2013, 113, 1.
      (e) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Rev. 2013, 113, 1.
      (f) Bai, Y.; Davis, D. C.; Dai, M. J. J. Org. Chem. 2017, 82, 2319.

    36. [36]

      (a) Li, Y.; Yang, Y.; Yu, B. Tetrahedron Lett. 2008, 49, 3604.
      (b) Yang, Y.; Li, Y.; Yu, B. J. Am. Chem. Soc. 2009, 131, 12076.
      (c) Yu, B.; Sun, J.; Yang, X. Acc. Chem. Res. 2012, 45, 1227.
      (d) Nie, S.; Li, W.; Yu, B. J. Am. Chem. Soc. 2014, 136, 4157.

    37. [37]

      Kim, H. J.; Choi, S.-H.; Jeon, B.-S.; Kim, N.; Pongdee, R.; Wu, Q.; Liu, H.-W. Angew. Chem., Int. Ed. 2014, 53, 13553.  doi: 10.1002/anie.201407806

    38. [38]

      Kim, H. J.; Pongdee, R.; Wu, Q.; Hong, L.; Liu, H.-W. J. Am. Chem. Soc. 2007, 129, 14582.  doi: 10.1021/ja076580i

    39. [39]

      (a) Kim, H. J.; Ruszczycky, M. W.; Choi, S.-H.; Liu, Y.-N.; Liu, H.-W. Nature 2011, 473, 109.
      (b) Kim, H. J.; Ruszczycky, M. W.; Liu, H.-W. Curr. Opin. Chem. Biol. 2012, 16, 124.
      (a) Oikawa, H. Bull. Chem. Soc. Jpn. 2005, 78, 537.

    40. [40]

      (a) Chen, Y.-L.; Chen, Y.-H.; Lin, Y.-C.; Tsai, K.-C.; Chiu, H.-T. J. Biol. Chem. 2009, 284, 7352.
      (b) Kim, H. J.; White-Phillip, J. A.; Ogasawara, Y.; Shin, N.; Isiorho, E. A.; Liu, H.-W. J. Am. Chem. Soc. 2010, 132, 2901.
      (c) Isiorho, E. A.; Liu, H.-w.; Keatinge-Clay, A. T. Biochemistry 2012, 51, 1213.

    41. [41]

      Yang, Y. L.; Lu, C. P.; Chen, M. Y.; Chen, K. Y.; Wu, Y. C.; Wu, S. H. Chem.-Eur. J. 2007, 13, 6985.  doi: 10.1002/(ISSN)1521-3765

    42. [42]

      Shionozaki, N.; Yamaguchi, T.; Kitano, H.; Tomizawa, M.; Makino, K.; Uchiro, H. Tetrahedron Lett. 2012, 53, 5167.  doi: 10.1016/j.tetlet.2012.07.058

    43. [43]

      Nicolaou, K.; Shi, L.; Lu, M.; Pattanayak, M. R.; Shah, A. A.; Ioannidou, H. A.; Lamani, M. Angew. Chem., Int. Ed. 2014, 53, 10970.  doi: 10.1002/anie.201406815

    44. [44]

      Li, L.; Yu, P.; Tang, M.-C.; Zou, Y.; Gao, S-S.; Hung, Y.-S.; Zhao, M.; Watanabe, K.; Houk, K. N.; Tang, Y. J. Am. Chem. Soc. 2016, 138, 15837.  doi: 10.1021/jacs.6b10452

    45. [45]

      Burmeister, H. R.; Bennet, G. A.; Vesonder, R. F.; Hesseltine, C. W. Antimicrob. Agents Chemother. 1974, 5, 634.  doi: 10.1128/AAC.5.6.634

    46. [46]

      Turos, E.; Audia, J. E.; Danishefsky, S. J. J. Am. Chem. Soc. 1989, 111, 8231.  doi: 10.1021/ja00203a026

    47. [47]

      (a) Burke, L. T.; Dixon, D. J.; Ley, S. V.; Rodríguez, F. Org. Lett. 2000, 2, 3611.
      (b) Burke, L. T.; Dixon, D. J.; Ley, S. V.; Rodríguez, F. Org. Biomol. Chem. 2005, 3, 274.

    48. [48]

      Kumiko, Y. K.; Shindo, M.; Shishido, K. Tetrahedron Lett. 2001, 42, 2517.  doi: 10.1016/S0040-4039(01)00217-9

    49. [49]

      Yin, J.; Wang, C.; Kong, L.; Cai, S.; Gao, S. Angew. Chem., Int. Ed. 2012, 51, 7786.  doi: 10.1002/anie.201202455

    50. [50]

    51. [51]

      (a) Oikawa, H. Cell Chem. Biol. 2016, 23, 429.
      (b) Oikawa, H.; Tokiwano, T. Nat. Prod. Rep. 2004, 21, 321.
      (c) Klas, K.; Tsukamoto, S.; Sherman, D. H.; Williams, R. M. J. Org. Chem. 2015, 80, 11672.
      (d) Minami, A.; Oikawa, H. J. Antibiot. 2016, 1.
      (e) Oikawa, H. Bull. Chem. Soc. 2005, 78, 537.
      (f) Jeon, B.-S.; Wang, S.-A.; Ruszczycky, M. W.; Liu, H.-W. Chem. Rev. 2017, 117, 5367.

    52. [52]

      (a) Wu, Q.; Wu, Z.; Qu, X.; Liu, W. J. Am. Chem. Soc. 2012, 134, 17342.
      (b) Tian, Z.; Sun, P.; Yan, Y.; Wu, Z.; Zheng, Q.; Zhou, X.; Zhang, H.; Yu, F.; Jia, X.; Chen, D.; Mandi, A.; Kurtan T.; Liu, W. Nat. Chem. Biol. 2015, 11, 259.
      (c) Pang, B.; Zhong, G.; Tang, Z.; Liu, W. Methods Enzymol. 2016, 575, 39.
      (d) Zheng, Q.; Tian, Z.; Liu, W. Curr. Opin. Chem. Biol. 2016, 31, 95.
      (e) Zheng, Q.; Guo, Y.; Yang, L.; Zhao, Z.; Wu, Z.; Zhang, H.; Liu, J.; Cheng, X.; Wu, J.; Yang, H.; Jiang, H.; Pan, L.; Liu, W. Cell Chem. Biol. 2016, 23, 352.
      (f) Zheng, Q.; Gong, Y.; Guo, Y.; Zhao, Z.; Wu, Z.; Zhou, Z.; Chen, D.; Pan, L.; Liu, W. Cell Chem. Biol. 2018, 25, 718.

    53. [53]

      Kato, N.; Nogawa, T.; Hirota, H.; Jang, J. H.; Takahashi, S.; Ahn, J. S.; Osada, H. Biochem. Biophys. Res. Commun. 2015, 460, 210.  doi: 10.1016/j.bbrc.2015.03.011

    54. [54]

      Li, X.; Zheng, Q.; Yin, J.; Liu, W.; Gao, S. Chem. Commun. 2017, 53, 4695.  doi: 10.1039/C7CC01929G

  • 加载中
    1. [1]

      Yuheng Zhou . 大学课堂的色彩——探索过渡元素的美. University Chemistry, 2025, 40(6): 303-309. doi: 10.12461/PKU.DXHX202407110

    2. [2]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    3. [3]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    4. [4]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    5. [5]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    6. [6]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    7. [7]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    8. [8]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    9. [9]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    10. [10]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    11. [11]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    12. [12]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    15. [15]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    16. [16]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    17. [17]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    18. [18]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    19. [19]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    20. [20]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

Metrics
  • PDF Downloads(157)
  • Abstract views(4230)
  • HTML views(1467)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return