Citation: Li Yao, Luo Sanzhong. Rational Design of Chiral Catalysts Based on Experimental Data and Reaction Mechanism[J]. Chinese Journal of Organic Chemistry, ;2018, 38(9): 2363-2376. doi: 10.6023/cjoc201806013 shu

Rational Design of Chiral Catalysts Based on Experimental Data and Reaction Mechanism

  • Corresponding author: Luo Sanzhong, luosz@mail.tsinghua.edu.cn
  • Received Date: 9 June 2018
    Revised Date: 10 July 2018
    Available Online: 16 September 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21672217, 21390400)the National Natural Science Foundation of China 21390400the National Natural Science Foundation of China 21672217

Figures(26)

  • Asymmetric catalysis is the most efficient chiral synthesis strategy. Chemists have already developed a variety of catalysts to achieve many asymmetric transformations. However, most of the deveoped chiral catalysts and the asymmetric catalytic reactions were developed on the basis of trios-errors approaches involving massive random screening. How to effectively obtain catalysts with higher activity and selectivity is still a challenge. In recent years, the rapid development of physical organic chemistry and computational chemistry has greatly facilitated the study of the reaction mechanism and the origin of selectivity, setting basis for rational catalyst design and evolution. This review will briefly introduce some representative works on the rational design of chiral catalysts in recent years, including rational design based on structure-activity relationship analysis, rational design based on reaction mechanism research, and computational design of enzymes.
  • 加载中
    1. [1]

      (a) Hutt, A. J. In Smith and Williams' Introduction to the Principles of Drug Design and Action, Ed.: Smith, H. J.; CRC Press, Taylor & Francis, Boca Raton, FL, 2006.
      (b) Garrison, A. W. Environ. Sci. Technol. 2006, 40, 16.
      (c) Kitzerow, H.-S.; Bahr, C. Chirality in Liquid Crystals, Springer-Verlag, New York, 2001.

    2. [2]

      (a) Hembury, G. A.; Borovkov, V. V.; Inoue, Y. Chem. Rev. 2008, 108, 1.
      (b) Tsukamoto, M.; Kagan, H. B. Adv. Synth. Catal. 2002, 344, 453.
      (c) Okamoto, Y.; Yashima, E. Angew. Chem., Int. Ed. 1998, 37, 1020.
      (d) Knochel, P.; Singer, R. D. Chem. Rev. 1993, 93, 2117.
      (e) Zhou, Q.-L. Privileged Chiral Ligands and Catalysts, Wiley-VCH, Weinheim, Germany, 2011.

    3. [3]

      Ding, K. L.; Fan, Q. H. Asymmetric Catalysis:New Concepts and Methods, Chemical Industry Press, Beijing, 2009(in Chinese).

    4. [4]

    5. [5]

      (a) Harper, K. C.; Sigman, M. S. J. Org. Chem. 2013, 78, 2813.
      (b) Houk, K. N.; Cheong, P. H.-Y. Nature 2008, 455, 309.

    6. [6]

      Zanghellini, A. Curr. Opin. Biotechnol. 2014, 29, 132.  doi: 10.1016/j.copbio.2014.03.002

    7. [7]

      Hammett, L. P. J. Am. Chem. Soc. 1937, 59, 96.  doi: 10.1021/ja01280a022

    8. [8]

      Wells, P. R. Chem. Rev. 1963, 63, 171.  doi: 10.1021/cr60222a005

    9. [9]

      Hansch, C.; Maloney, P. P.; Fujita, T.; Muir, R. M. Nature 1962, 194, 178.
       

    10. [10]

      Jacobsen, E. N.; Zhang, W.; Güler, M. L. J. Am. Chem. Soc. 1991, 113, 6703.  doi: 10.1021/ja00017a069

    11. [11]

    12. [12]

      Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.  doi: 10.1021/cr00002a004

    13. [13]

      Palucki, M.; Finney, N. S.; Pospisil, P. J.; Güler, M. L.; Ishida, T.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 948.  doi: 10.1021/ja973468j

    14. [14]

      Rodríguez-Escrich, S.; Reddy, K. S.; Jimeno, C.; Colet, G.; Rodríguez-Escrich, C.; Solá, L.; Vidal-Ferran, A.; Pericás, M. A. J. Org. Chem. 2008, 73, 5340.  doi: 10.1021/jo800615d

    15. [15]

      (a) Akiyama, T.; Mori, K. Chem. Rev. 2015, 115, 9277.
      (b) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 1520.

    16. [16]

      Jensen, K. H.; Sigman, M. S. Angew. Chem., Int. Ed. 2007, 46, 4748.  doi: 10.1002/(ISSN)1521-3773

    17. [17]

      Li, X.; Deng, H.; Zhang, B.; Li, J.; Zhang, L.; Luo, S. Z.; Cheng, J.-P. Chem.-Eur. J. 2010, 16, 450.  doi: 10.1002/chem.v16:2

    18. [18]

      (a) Knowles, R. R.; Jacobsen, E. N. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 20678.
      (b) Zuend, S. J.; Jacobsen, E. N. J. Am. Chem. Soc. 2009, 131, 15358.

    19. [19]

      Jones, R. N.; Forbes W. F.; Mueller, W. A. Can. J. Chem. 1957, 35, 504.  doi: 10.1139/v57-071

    20. [20]

      Milo, A.; Bess, E. N.; Sigman, M. S. Nature 2014, 507, 210.  doi: 10.1038/nature13019

    21. [21]

      (a) Knowles, R. R.; Jacobsen, E. N. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 20678.
      (b) Neel, A. J.; Hilton, M. J.; Sigman, M. S.; Toste, F. D. Nature 2017, 543, 637.
      (c) Toste, F. D.; Sigman, M. S.; Miller, S. J. Acc. Chem. Res. 2017, 50, 609.

    22. [22]

      Wheeler, S. E.; Houk, K. N. J. Am. Chem. Soc. 2008, 130, 10854.  doi: 10.1021/ja802849j

    23. [23]

      Orlandi, M.; Coelho, J. A. S.; Hilton, M. J.; Toste, F. D.; Sigman, M. S. J. Am. Chem. Soc. 2017, 139, 6803.  doi: 10.1021/jacs.7b02311

    24. [24]

      Orlandi, M.; Hilton, M. J.; Yamamoto, E.; Toste, F. D.; Sigman, M. S. J. Am. Chem. Soc. 2017, 139, 12688.  doi: 10.1021/jacs.7b06917

    25. [25]

      Taft Jr, R. W. J. Am. Chem. Soc. 1952, 72, 2729.
       

    26. [26]

      Charton, M. J. Am. Chem. Soc. 1975, 97, 1552.  doi: 10.1021/ja00839a047

    27. [27]

      Verloop, A. In Drug Design, Academic Press, New York, 1976.

    28. [28]

      Harper, K. C.; Bess, E. N.; Sigman, M. S. Nat. Chem. 2012, 4, 366.  doi: 10.1038/nchem.1297

    29. [29]

      Harper, K. C.; Sigman, M. S. Science 2011, 333, 1875.  doi: 10.1126/science.1206997

    30. [30]

      Harper, K. C.; Vilardi, S. C.; Sigman, M. S. J. Am. Chem. Soc. 2013, 135, 2482.  doi: 10.1021/ja4001807

    31. [31]

      Yang, C.; Zhang, E.-G.; Li, X.; Cheng, J.-P. Angew. Chem., Int. Ed. 2016, 55, 6506.  doi: 10.1002/anie.201601028

    32. [32]

      Yang, C.; Wang, J.; Liu, Y.; Ni, X.; Li, X.; Cheng, J. P. Chem.-Eur. J. 2017, 23, 5488.  doi: 10.1002/chem.v23.23

    33. [33]

      Belokon, Y. N.; Green, B.; Ikonnikov, N. S.; Larichev, V. S.; Lokshin, B. V.; Moscalenko, M. A.; North, M.; Orizu, C.; Peregudov, A. S; . Timofeeva, G. I. Eur. J. Org. Chem. 2000, 2655.
       

    34. [34]

      Belokon, Y. N.; Blacker, A. J.; Carta, P.; Clutterbuck, L. A.; North, M. Tetrahedron 2004, 60, 10433.  doi: 10.1016/j.tet.2004.07.098

    35. [35]

      Zhang, Z.; Wang, Z.; Zhang. R.; Ding, K. Angew. Chem., Int. Ed. 2010, 49, 6746.  doi: 10.1002/anie.201002127

    36. [36]

      DiRocco, D. A.; Ji, Y.; Sherer, E. C.; Klapars, A.; Reibarkh, M.; Dropinski, J.; Mathew, R.; Maligres, P.; Hyde, A. M.; Limanto, J.; Brunskill, A.; Ruck, R. T.; Campeau, L.-C.; Davies, I. W. Science 2017, 356, 426.  doi: 10.1126/science.aam7936

    37. [37]

      Mitsumori, S.; Zhang, H.; Cheong, P. H.-Y.; Houk, K. N.; Tanaka, F.; Barbas, C. F. J. Am. Chem. Soc. 2006, 128, 1040.  doi: 10.1021/ja056984f

    38. [38]

      Cheong, P. H.-Y.; Zhang, H.; Thayumanavan, R.; Tanaka, F.; Houk, K. N.; Barbas, C. F. Org. Lett. 2006, 8, 811.  doi: 10.1021/ol052861o

    39. [39]

      Jang, K. P.; Hutson, G. E.; Johnston, R. C.; McCusker, E. O.; Cheong, P. H.-Y.; Scheidt, K. A. J. Am. Chem. Soc. 2014, 136, 76.  doi: 10.1021/ja410932t

    40. [40]

      Rooks, B. J.; Haas, M. R.; Sepúlveda, D.; Lu, T.; Wheeler, S. E. ACS Catal. 2015, 5, 272.  doi: 10.1021/cs5012553

    41. [41]

      Doney, A. C.; Rooks, B. J.; Lu, T.; Wheeler, S. E. ACS Catal. 2016, 6, 7948.  doi: 10.1021/acscatal.6b02366

    42. [42]

      Guan, Y.; Wheeler, S. E. Angew. Chem., Int. Ed. 2017, 56, 9101.  doi: 10.1002/anie.201704663

    43. [43]

      Gerosa, G. G.; Spanevello, R. A.; Suárez, A. G.; Sarotti, A. M. J. Org. Chem. 2015, 80, 7626.  doi: 10.1021/acs.joc.5b01214

    44. [44]

      Straker, R. N.; Peng, Q.; Mekareeya, A.; Paton, R. S.; Anderson, E. A. Nat. Commun. 2016, 7, 10109.  doi: 10.1038/ncomms10109

    45. [45]

      Burrows, L. C.; Jesikiewicz, L. T.; Lu, G.; Geib, S. J.; Liu, P.; Brummond, K. M. J. Am. Chem. Soc. 2017, 139, 15022.  doi: 10.1021/jacs.7b07121

    46. [46]

      Daubignard, J.; Detz, R. J.; Jans, A. C. H.; Bruin, B. de; Reek, J. N. H. Angew. Chem., Int. Ed. 2017, 56, 13056.  doi: 10.1002/anie.201707670

    47. [47]

      Duan, M.; Zhu, L.; Qi, X.; Yu, Z.; Li, Y.; Bai, R.; Lan, Y. Sci. Rep. 2017, 7, 7619.  doi: 10.1038/s41598-017-07863-9

    48. [48]

      Lee, S. Y.; Fujiwara, Y.; Nishiguchi, A.; Kalek, M.; Fu, G. C. J. Am. Chem. Soc. 2015, 137, 4587.  doi: 10.1021/jacs.5b01985

    49. [49]

      Bottcher, D.; Bornscheuer, U. T. Curr. Opin. Microbiol. 2010, 13, 274.  doi: 10.1016/j.mib.2010.01.010

    50. [50]

      (a) Schwizer, F.; Okamoto, Y.; Heinisch, T.; Gu, Y.; Pellizzoni, M. M.; Lebrun, V.; Reuter, R.; Köhler, V.; Lewis, J. C.; Ward, T. R. Chem. Rev. 2018, 118, 142.
      (b) Heinisch, T., Ward, T. R. Acc. Chem. Res. 2016, 49, 1711.
      (c) Pàmies, O.; Diéguez, M.; Bäckvallb, J.-E. Adv. Synth. Catal. 2015, 357, 1567.

    51. [51]

      Huang, P.-S.; Boyken, S, E.; Baker, D. Nature 2015, 320, 537.
       

    52. [52]

      Wijma, H. J.; Floor, R. J.; Bjelic, S.; Marrink, S. J.; Baker, D.; Janssen, D. B. Angew. Chem., Int. Ed. 2015, 54, 3726.  doi: 10.1002/anie.201411415

    53. [53]

      Li, R.; Wijma, H. J.; Song, L.; Cui, Y.; Otzen, M.; Tian, Y.; Du, J.; Li, T.; Niu, D.; Chen, Y.; Feng, J.; Han, J.; Chen, H.; Tao, Y.; Janssen, D. B.; Wu B. Nat. Chem. Biol. 2018, 14, 664.  doi: 10.1038/s41589-018-0053-0

    54. [54]

      Jiang, L.; Althoff, E. A.; Clemente, F. R.; Doyle, L.; Rothlisberger, D.; Zanghellini, A.; Gallaher, J. L.; Betker, J. L.; Tanaka, F.; Barbas, C. F.; Hilvert, D.; Houk, K. N.; Stoddard, B. L.; Baker, D. Science 2008, 319, 1387.  doi: 10.1126/science.1152692

    55. [55]

      Richter, F.; Leaver-Fay, A.; Khare, S. D.; Bjelic, S.; Baker, D. PLoS One 2011, 6, e19230.  doi: 10.1371/journal.pone.0019230

    56. [56]

      (a) Tian, Z.; Sun, P.; Yan, Y.; Wu, Z.; Zheng, Q.; Zhou, S.; Zhang, H.; Yu, F.; Jia, X.; Chen, D.; Mándi, A.; Kurtán, T.; Liu, W. Nat. Chem. Biol. 2015, 11, 259.
      (b) Jeon, B.; Wang, S.-A.; Ruszczycky, M. W.; Liu, H.-W. Chem. Rev. 2017, 117, 5367.

    57. [57]

      Siegel, J. B.; Zanghellini, A.; Lovick, H. M.; Kiss, G.; Lambert, A. R.; Clair, J. L. S.; Gallaher, J. L.; Hilvert, D.; Gelb, M. H.; Stoddard, B. L.; Houk, K. N.; Michael, F. E.; Baker, D. Science 2010, 329, 309.  doi: 10.1126/science.1190239

    58. [58]

      Segler, M. H. S.; Preuss, M.; Waller, M. P. Nature 2018, 555, 604.  doi: 10.1038/nature25978

    59. [59]

      Ahneman, D. T.; Estrada, J. G.; Lin, S.; Dreher, S. D.; Doyle, A. G. Science 2018, 360, 186.  doi: 10.1126/science.aar5169

  • 加载中
    1. [1]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    2. [2]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    3. [3]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    4. [4]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    9. [9]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    10. [10]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    11. [11]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    12. [12]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    13. [13]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    14. [14]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    15. [15]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    16. [16]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    17. [17]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

Metrics
  • PDF Downloads(29)
  • Abstract views(2417)
  • HTML views(604)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return