Citation: Ni Guowei, Tang Jiawei, Zou Jie, Chen Shaoxin, Ju Dianwen, Zhang Fuli. Recent Advances on Carbonyl Reductases for Dynamic Kinetic Resolution[J]. Chinese Journal of Organic Chemistry, ;2019, 39(2): 339-349. doi: 10.6023/cjoc201806012 shu

Recent Advances on Carbonyl Reductases for Dynamic Kinetic Resolution

Figures(18)

  • Biocatalysis is a basic method of asymmetric catalysis for preparing chiral Active Pharmaceutical Ingredients, which owns several "green merits":chemo-, regio-and high enantioselectivity. As the development of DNA seqencing, DNA synthesis and protein engineering, suitable enzymes can be efficiently developed for basic researches and industrial applications. Biocatalysis has been keeping as a hot spot in asymmetric synthesis recently. Carbonyl reductases have been widely used for stereoselectively transforming ketones to chiral second alcohols with only one stereocenter. When combining with Dynamic Kinetic Resolution (DKR), the bioreaction with carbonyl reductases can efficiently construct chiral alcohols with two stereocenters in one step. This review highlights the method of its mechanism and nearly twenty examples from research papers and patents for one decade. We attempt to analyze and conclude the characteristics of this method based on chemical structures and enzymes. At last, a practical and developing research method is recommended in three steps:screening-racemization-balance in sequence. It is hoped to be useful for future basic researches and industrial applications.
  • 加载中
    1. [1]

      Lin, G.-Q.; Li, M.-Y.; Chen, Y.-Q.; Sun, X.-W.; Chen, X.-Z. Chiral Synthesis-Asymmetric Reactions and Its Application, Science Press, Beijing, 2010, p. 584 (in Chinese).

    2. [2]

      Straathof, A. J.; Panke, S.; Schmid, A. Curr. Opin. Biotechnol. 2002, 13, 548.  doi: 10.1016/S0958-1669(02)00360-9

    3. [3]

      Tao, J.-H.; Lin, G.-Q.; Liese, A. Biocatalysis for the Pharmaceutical Industry Discovery, Development and Manufaturing, Chemical Industry Press, Beijing, 2010, p. 3 (in Chinses).

    4. [4]

      Truppo, M. D.; Pollard, D.; Devine, P. Org. Lett. 2007, 9, 335.  doi: 10.1021/ol0627909

    5. [5]

      Kavanagh, K. L.; Klimacek, M.; Nidetzky, B.; Wilson, D. K. Biochemistry 2002, 41, 8785.  doi: 10.1021/bi025786n

    6. [6]

      Xu, Z.; Jing, K.; Liu, Y.; Cen, P. J. Ind. Microbiol. Biotechnol. 2007, 1, 83.
       

    7. [7]

      Inoue, K.; Makino, Y.; Itoh, N. Appl. Environ. Microb. 2005, 7, 3633.

    8. [8]

      Ma, S. J.; Gruber, J.; Davis, C.; Newman, L.; Gray, D.; Wang, A.; Grate, J.; Huisman, G. W.; Sheldon, R. A. Green Chem. 2010, 12, 81.  doi: 10.1039/B919115C

    9. [9]

      Liang, J.; Lalonde, J.; Borup, B.; Mitchell, V.; Mundorff, E.; Trinh, N.; Kochrekar, D. A.; Cherat, R. N.; Pai, G. G. Org. Process Res. Dev. 2010, 193.

    10. [10]

      Nurit, P.; Ayelet, M. WO 2008151324. 2008.

    11. [11]

      Bong, Y. K.; Vogel, M.; Collier, S. J.; Mitchell, V.; Mavinahalli, J. WO 2011005527, 2010.

    12. [12]

      Li, H. G.; Moncecchi, J.; Truppo, M. D. Org. Pro. Res. Dev. 2015, 19, 695.  doi: 10.1021/op5003215

    13. [13]

      Savile, C.; Gruber, J. M.; Mundorff, E.; Huisman, G. W.; Collier, S. J. WO 20100252, 2009.

    14. [14]

      Isotani, K.; Kurokawa, J. J.; Itoh, N. Int. J. Mol. Sci. 2012, 13, 13542.  doi: 10.3390/ijms131013542

    15. [15]

      Zheng, W.-X.; Xu, G.-C.; Huang, L.; Pan, J.; Yu, H.-L.; Xu, J.-H. Org. Lett. 2013, 19, 4917.

    16. [16]

      Zhang, F.-L.; Ni, G.-W. Chen, S.-X.; Ju, D.-W.; Tang, J.-W.; Tan, Z.-M.; Zou, J.; Guo, X.; Wang, Z.-W. CN 201611008108, 2016.

    17. [17]

      Zhang, F.-J.; Liu, Y.; Peng, X.-Q.; Guo, C.; Wu, Z.-L. Appl. Microbiol. Biotechnol. 2016, 5, 1.

    18. [18]

      Liang, J.; Jenne, S. J.; Mundorff, E.; Ching, C.; Gruber, J. M.; Krebber, A.; Huisman, G. W. WO 2009036404, 2008.

    19. [19]

      Xu, G.-P.; Wang, H.-B.; Wu, Z.-L. Process Biochem. 2016, 51, 881.  doi: 10.1016/j.procbio.2016.04.008

    20. [20]

      Tao, J.-H.; Li, G.-Q.; Liese, A. Biocatalysis for the Pharmaceutical Industry-Discovery, Development and Manufaturing, Chemical Industry Press, Beijing, 2010, p. 121 (in Chinses).

    21. [21]

      Luetz, S.; Giver, L.; Lalonde, J. Engineered Enzymes for Chemical Production. Biotechnology and Bioengineering, 2008, 4, 647.

    22. [22]

      Tufvesson, P.; Lima-Ramos, J.; Nordblad, M.; Woodley, J. M. Org. Process. Res. Dev. 2011, 15, 266.  doi: 10.1021/op1002165

    23. [23]

      Xin, L. H.; Nicholas, W.; Hans, I.; Vera, J.; Zhang, H. M.; Koenig, S. G.; Gossselin, Francis. Org. Process Res. Dev. 2017, 3, 387.

    24. [24]

      Hou, X. P.; Zhang, H. P.; Chen, B. C. Guo, Z. W.; Singh, A.; Goswami, A.; Gilmore, J. L.; Sheppeck, J. E.; Dyckman, A. J. Carter, P. H.; Mathur, A. Org. Process Res. Dev. 2017, 2, 200.

    25. [25]

      Ginotra, S. K. J.; Friest, A.; Berkowitz, D. B. Org. Lett. 2012, 14, 968.  doi: 10.1021/ol203088g

    26. [26]

      Pellissier, H. Adv. Synth. Catal. 2011, 353, 659.  doi: 10.1002/adsc.201000751

    27. [27]

      Cheng, Y.-M.; Xu, G.; Wu, J.-P.; Yang, L.-R. Chin. J. Org. Chem. 2010, 31, 1695 (in Chinses).
       

    28. [28]

      Zhang, Z.-H.; Liu, Q.-B. Chin. J. Org. Chem. 2005, 25, 780 (in Chinses).  doi: 10.3321/j.issn:0253-2786.2005.07.005
       

    29. [29]

      Larsson A. L. E.; Persson, B. A.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 1997, 36, 1211.  doi: 10.1002/(ISSN)1521-3773

    30. [30]

      Sakulsombat, M.; Vongvilai, P.; Ramstr m, O. Chem.-Eur. J. 2014, 20, 11322.  doi: 10.1002/chem.v20.36

    31. [31]

      Lhum, M. D.; Toulouse, J. R. US 5204469, 1991.

    32. [32]

      Reddy, B. S. WO 2006003671, 2004.

    33. [33]

      Wang, X.-L.; Xu, L.-J.; Yan, L.-J.; Wang, H.-F.; Han, S.; Wu, Y.; Chen, F. Tetrahedron 2016, 72, 1787.  doi: 10.1016/j.tet.2016.02.045

    34. [34]

      Sayo, N.; Satio, T.; Okeda, Y.; Nagashima, H.; Kumobayashi, H. US 4981992, 1991.

    35. [35]

      Li, X.-M.; Tao, X.-M.; Ma, X.; Li, W.-F.; Zhao, M.-M.; Xie, X.-M.; Ayad, T.; Ratovelomanana-Vidal, V.; Zhang, Z.-G. Tetrahedron 2013, 34, 7152.

    36. [36]

      Deol, B. S.; Ridley, D.; Simpson, G. Aust. J. Chem. 1976, 29, 2459.  doi: 10.1071/CH9762459

    37. [37]

      Gamenara, D.; Sevane, G. A.; Mendez, P. S.; Maria, P. D. Redox Biocatalysis, Wiley, New Jewery 2013, Chapter 3.

    38. [38]

      Faber, K.; Fessner, W. D.; Turner, N. J. Biocatalysis in Organic Synthesis 2, Georg Thieme Verlag KG, New York, 2015, pp. 421~458.

    39. [39]

      Bornscheuer, U. T.; Huisman, G. W.; Kazlauskas, R. J.; Lutz, S.; Moore, J. C.; Robins, K. Nature 2012, 485, 185.  doi: 10.1038/nature11117

    40. [40]

      Savile, C. K.; Janey, J. M.; Mundorff, E. C.; Moore, J. C.; Sarena, T.; Jarvis, W. R.; Colbeck, J. C.; Krebber, A.; Fleitz, F. J.; Brands, J.; Devine, P. N.; Huisman, G. W.; Hughes, G. J. Science 2010, 329, 305.  doi: 10.1126/science.1188934

    41. [41]

      Zheng, M.-M.; Chen, K.-C.; Wang, R.-F.; Li, H.; Li, C.-X.; Xu, J.-H. J. Agric. Food Chem. 2017, 6, 1178.

    42. [42]

      Kalaitzakis, D.; Rozzell, J. D.; Kambourakis, S.; Smonou, L. Org. Lett. 2005, 7, 4799.  doi: 10.1021/ol051166d

    43. [43]

      Lüdeke, S.; Richter, M.; Müller, M. Adv. Synth. Catal. 2009, 351, 253.  doi: 10.1002/adsc.200800619

    44. [44]

      Yasohara, Y.; Yano, M.; Kawano, S.; Kizaki, N. JP 200521371, 2005.

    45. [45]

      Onorato, C.; Emily, M.; Birthe, B.; Rama, V. US 9719071, 2007.

    46. [46]

      Juan, M. S.; Busto, E.; Gotor, V.; Vicente, G. F. Org. Lett. 2013, 15, 3872.  doi: 10.1021/ol401606x

    47. [47]

      Hyde, A. M.; Liu, Z. J.; Kosjek, B.; Tan, L. S.; Klapars, A.; Ashley, E. R.; Zhong, Y. L.; Alvizo, O.; Agard, N. J.; Liu, G. Q.; Gu, X. Y.; Yasuda, N.; Limanto, J.; Huffman, M. A.; Tschaen, D. M. Org. Lett. 2016, 18, 5888.  doi: 10.1021/acs.orglett.6b02910

    48. [48]

      Dimitris, K.; Ioulia, S. J. Org. Chem. 2010, 4, 8659.

    49. [49]

      Danchet, S.; Bigot, C.; Buisson, D.; Azerad, R. Tetrahedron: Asymmetry 1997, 11, 1735.

    50. [50]

      Kosjek, B.; Tellers, D. M.; Biba, M.; Farr, R.; Moore, J. Tetrahedron: Asymmetry 2006, 17, 2798.  doi: 10.1016/j.tetasy.2006.10.012

    51. [51]

      Musa, M. M.; Ziegelmann-Field, K. I.; Vieille, C.; Zeikus, J. G.; Phillips, R. S. J. Org. Chem. 2007, 72, 30.  doi: 10.1021/jo0616097

    52. [52]

      Feske, B. D.; Kaluzna, I. A.; Stewart, J. D. J. Org. Chem. 2005, 70, 9654.  doi: 10.1021/jo0516077

    53. [53]

      Marocco, C. P.; Davis, E. V.; Finnell, J. E.; Nguyen, P. H.; Mateer, S. C.; Ghiviriga, I.; Padgett, C. W.; Feske, B. D. Tetrahedron: Asymmetry. 2011, 22, 1784.  doi: 10.1016/j.tetasy.2011.10.009

    54. [54]

      Perrone, M. G.; Santandrea, E.; Scilimati, A.; Syldatk, C.; Tortorella, V.; Capitellic, F.; Bertolasi, V. Tetrahedron: Asymmetry 2004, 15, 3511.  doi: 10.1016/j.tetasy.2004.08.028

    55. [55]

      Patal, R.; Banerjso, A.; Howell, J. M.; Mcnameo, C. G.; Brozozowski, D.; Mirfakhras, D.; Naaduri, V.; Thottathll, J. K.; Starka, L. J. Tetrahedron: Asymmetry 1993, 9, 2069.

    56. [56]

      Kataoka, M.; Nakamura, Y.; Urano, N.; Ishige, T.; Shi, G.; Kita, S.; Sakamoto, K.; Shimizu, S. Lett. Appl. Microbiol. 2006, 43, 430.  doi: 10.1111/lam.2006.43.issue-4

    57. [57]

      Kataoka, M.; Ishige, T.; Urano, N.; Nakamura, Y.; Sakuradani, E.; Fukui, S.; Kita, S.; Sakamoto, K.; Shimizu, S. Appl. Microbiol. Biotechnol. 2008, 80, 597.  doi: 10.1007/s00253-008-1563-6

    58. [58]

      Urano, N.; Fukui, S.; Kumashiro, S.; Ishige, T.; Kita, S.; Sakamoto, K.; Kataoka, M.; Kita, S.; Shimizu, S. J. Biosci. Bioeng. 2011, 3, 266.

    59. [59]

      Xu, F.; Chung, J. Y. L.; Moore, J. C.; Liu, Z. Q.; Yoshikawa, N.; Hoerrner, R. S.; Lee, J.; Royzen, M.; Cleator, E.; Gibson, A. G.; Dunn, R.; Maloney, K. M.; Alam, M.; Goodyear, A.; Lynch, J.; Yasuda, N.; Devine, P. N. Org. Lett. 2013, 6, 1342.

    60. [60]

      Friest, J. A.; Maezato, Y.; Broussy, S.; Blum, P.; Berkowitz, D. B. J. Am. Chem. Soc. 2010, 132, 5930.  doi: 10.1021/ja910778p

    61. [61]

      Applegate, G. A.; Berkowitz, D. B. Adv. Synth. Catal. 2015, 357, 1619.  doi: 10.1002/adsc.201500316

    62. [62]

      Limanto, J.; Ashley, E. R.; Yin, J. J.; Beutner, G..; Grau, B. T.; Klapars, A. M.; Kim, M. M.; Klapars, A. P.; Liu, Z. J.; Strotman, H. R.; Truppo, M. D. Org. Lett. 2014, 16, 2716.  doi: 10.1021/ol501002a

    63. [63]

      Peng, Z. H.; Wong, J. H.; Hansen, E. C.; Puchlopek-Dermenci, A. L. A.; Clarke, H. J. Org. Lett. 2014, 16, 860.  doi: 10.1021/ol403630g

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    4. [4]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    5. [5]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    6. [6]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    7. [7]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    8. [8]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    9. [9]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    10. [10]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    11. [11]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    12. [12]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    13. [13]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    16. [16]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    17. [17]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    18. [18]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    19. [19]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    20. [20]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

Metrics
  • PDF Downloads(41)
  • Abstract views(2116)
  • HTML views(495)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return