Citation: Ruan Liheng, Chen Chunxin, Zhang Xiaoxin, Sun Jing. Recent Advances on the Photo-Induced Reactions of Acyl Radical[J]. Chinese Journal of Organic Chemistry, ;2018, 38(12): 3155-3164. doi: 10.6023/cjoc201806009 shu

Recent Advances on the Photo-Induced Reactions of Acyl Radical

  • Corresponding author: Sun Jing, sunjing@lnpu.edu.cn
  • Received Date: 7 June 2018
    Revised Date: 30 July 2018
    Available Online: 23 December 2018

    Fund Project: Project supported by the Fund of Liaoning Provincial Department of Education (No. L2016022) and the Talent Scientific Research Found of Liaoning Shihua University (No. 2016XJJ-006)the Talent Scientific Research Found of Liaoning Shihua University 2016XJJ-006the Fund of Liaoning Provincial Department of Education L2016022

Figures(13)

  • Recently, the photo-induced radical reactions have emerged as a hot research topic in the field of organic synthetic chemistry. Among these, the radical acylation reaction via photocatalyst is one of the most effecient strategy to prepare ketones under mild conditions. The recent progress on the photo-induced reactions of acyl radical, various acyl radical sources and its application in the organic synthesis is summaried.
  • 加载中
    1. [1]

      (a) Smith, M. B.; March, J. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed., John Wiley & Sons, Inc., Hoboken, NJ, 2007.
      (b) Denisov, E. T.; Afanas'ev, I. B. Oxidation and Antioxidants in Organic Chemistry and Biology, 5th ed., CRC Press, Boca Raton, 2005.

    2. [2]

      (a) Guyton, A. C.; Hall, J. E. Textbook of Medical Physiology, 11th ed., Philadelphia, PA, Elsevier Saunders, 2005.
      (b) Kleemann, A.; Engel, J.; Kutscher, B.; ReicheArt, D. Pharmaceutical Substances: Syntheses, Patents, Applications, 4th ed., Georg Thieme, Stuttgart, 2001.

    3. [3]

      (a) Tang, M.; Zou, Y.; Watanabe, K. J.; Walsh, C. T.; Tang, Y. Chem. Rev. 2017, 117, 5226.
      (b) Liang, Y.-F.; Jiao N. Acc. Chem. Res. 2017, 50, 1640.
      (c) Bai, Y.; Davis, D. C.; Dai, M. J. Org. Chem. 2017, 82, 2319.
      (d) Huang, Z.; Lim, H. N.; Mo, F. Y.; Dong, G.-B. Chem. Soc. Rev. 2015, 44, 7764.
      (e) Magano, J.; Dunetz, J. R. Chem. Rev. 2011, 111, 2177.

    4. [4]

      (a) Yang, Q.; Zhang, L.; Ye, C.; Luo, S.; Wu, L.-Z.; Tung, C.-H. Angew. Chem., Int. Ed. 2017, 56, 3694.
      (b) Fu, N.; Li, L.; Yang, Q.; Luo, S. Org. Lett. 2017, 19, 2122.
      (c) Zhou, Q.; Wei, S.; Han, W. J. Org. Chem. 2014, 79, 1454.
      (d) Gu, L.; Liu, J.; Zhang, H. Chin. J. Chem. 2014, 32, 1267.
      (e) Li, M.; Wang, C.; Ge, H.Org. Lett. 2011, 13, 2064.

    5. [5]

      Guo, L. N.; Wang, H.; Duan, X.-H. Org. Biomol. Chem. 2016, 14, 7380.  doi: 10.1039/C6OB01113F

    6. [6]

      (a) Bath, S.; Laso, M. N.; Lopez-Ruiz, H.; Quiclet-Sire, B.; Zard, S. Z. Chem. Commun. 2003, 204.
      (b) Liu, Z.-J.; Zhang, J.; Chen, S.-L.; Shi, E.; Xu, Y.; Wan, X.-B. Angew. Chem., Int. Ed. 2012, 51, 3231.
      (c) Liu, Y.; Li, Y.; Qi, Y.; Wan, J. Synthesis 2010, 4188.

    7. [7]

      Ryu, I. Chem. Soc. Rev. 2001, 30, 16.  doi: 10.1039/a904591k

    8. [8]

      (a) Clark, A. J. Chem. Soc. Rev. 2002, 31, 1.
      (b) Recupero, F.; Punta, C. Chem. Rev. 2007, 107, 3800.

    9. [9]

      Hopkinson, M. N.; Tlahuext-Aca, A.; Glorius, F. Acc. Chem. Res. 2016, 49, 2261.  doi: 10.1021/acs.accounts.6b00351

    10. [10]

      (a) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J.Chem. Soc. Rev. 2016, 45, 2044.
      (b) Prier, C. K.; Rankic, A. D.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
      (c) Shi, L.; Xia, W.Chem. Soc. Rev. 2012, 41, 7687.
      (d) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.

    11. [11]

    12. [12]

      (a) Li, Z.-Y.; Li, D.-D.; Wang, G.-W. J. Org. Chem. 2013, 78, 10414.
      (b) Li, H.; Li, P.; Wang, L. Chem. Commun. 2013, 49, 9170.
      (c) Li, H.; Li, P.; Wang, L. Chem.-Eur. J. 2013, 19, 14432.

    13. [13]

      Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y. Org. Lett. 2015, 17, 4830.  doi: 10.1021/acs.orglett.5b02392

    14. [14]

      Ji, W.; Tan, H.; Wang, M.; Li, P.; Wang, L. Chem. Commun. 2016, 52, 1462.  doi: 10.1039/C5CC08253F

    15. [15]

      Zhang, J.-J.; Cheng, Y.-B.; Duan, X.-H. Chin. J. Chem. 2017, 35, 311.  doi: 10.1002/cjoc.v35.3

    16. [16]

      Cheng, W.-M.; Shang, R.; Yu, H.-Z.; Fu, Y. Chem.-Eur. J. 2015, 21, 13191.  doi: 10.1002/chem.v21.38

    17. [17]

      Chu, L.-L.; Lipshultz, J.-M.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2015, 54, 7929.  doi: 10.1002/anie.201501908

    18. [18]

      (a) Labinger, J. A. Chem. Rev. 2017, 117, 8483.
      (b) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754.
      (c) Wei, Y.; Hu, P.; Zhang, M.; Su, W.-P. Chem. Rev. 2017, 117, 8864.
      (d) Moselage, M.; Li, J.; Ackermann, L.ACS Catal. 2016, 6, 498.

    19. [19]

    20. [20]

      Gu, L.-J.; Jin, C.; Liu, J.-Y.; Zhang, H.-T.; Yuan, M.-L.; Li, G.-P. Green Chem. 2016, 18, 1201.  doi: 10.1039/C5GC01931A

    21. [21]

      Shi, Q.; Li, P.; Zhu, X.; Wang, L. Green. Chem. 2016, 18, 4916.  doi: 10.1039/C6GC00516K

    22. [22]

      Zhou, C.; Li, P.; Zhu, X.; Wang, L. Org. Lett. 2015, 17, 6198.  doi: 10.1021/acs.orglett.5b03192

    23. [23]

      Xu, N.; Li, P.; Xie, Z.; Wang, L. Chem.-Eur. J. 2016, 22, 2236.  doi: 10.1002/chem.201504530

    24. [24]

    25. [25]

      Hui, T.; Li, H.-J.; Ji, W.-Q.; Wang, L. Angew. Chem., Int. Ed. 2015, 54, 8374.  doi: 10.1002/anie.201503479

    26. [26]

      Huang, H.; Zhang, G.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 7872.  doi: 10.1002/anie.201502369

    27. [27]

      Sheldon, R.; Bekkum, H. Fine Chemicals through Heterogene-ous Catalysts, John Wiley & Sons Inc., New York, 2001.

    28. [28]

      Esposti, S.; Dondi, D.; Fagnoni, M.; Albini, A. Angew. Chem. 2007, 119, 2583.  doi: 10.1002/(ISSN)1521-3757

    29. [29]

      Davelli, R.; Zema, M.; Mella, M.; Fagnoni, M.; Albinia, A. Org. Biomol. Chem. 2010, 8, 4158.  doi: 10.1039/c0ob00066c

    30. [30]

      Bonassi, F.; Ravelli, D.; Protti, S.; Fagnoni, M. Adv. Synth.Catal. 2015, 357, 3687.  doi: 10.1002/adsc.201500483

    31. [31]

      Angioni, S.; Ravelli, D.; Emma, D.; Dondi, D.; Fagnoni, M.; Albini, A. Adv. Synth. Catal. 2008, 350, 2209.  doi: 10.1002/adsc.v350:14/15

    32. [32]

      Tzirakis, M. D.; Orfanopoulos, M. J. Am. Chem. Soc. 2009, 131, 4063.  doi: 10.1021/ja808658b

    33. [33]

      Moteki, S. A.; Usui, A.; Selvakumar, S.; Zhang, T.-X.; Maruoka, K. Angew. Chem., Int. Ed. 2014, 53, 11060.  doi: 10.1002/anie.201406513

    34. [34]

      Selvakumar, S.; Sakamoto, R.; Maruoka, K. Chem.-Eur. J. 2016, 22, 6552.  doi: 10.1002/chem.201600425

    35. [35]

      Jiang, J.; Ramozzi, R.; Moteki, S.; Usui, A.; Maruoka, K.; Morokuma, K. J. Org. Chem. 2015, 80, 9264.  doi: 10.1021/acs.joc.5b01695

    36. [36]

      Papadopoulos, G. N.; Voutyritsa, E.; Kaplaneris, N.; Kokotos, G. C. Chem.-Eur. J. 2018, 24, 1726.  doi: 10.1002/chem.201705634

    37. [37]

      Vu, M. D.; Das, M.; Liu, X.-W. Chem.-Eur. J. 2017, 23, 15899.  doi: 10.1002/chem.201704224

    38. [38]

      Li, J.; Wang, D. Z. Org. Lett. 2015, 17, 5260.  doi: 10.1021/acs.orglett.5b02629

    39. [39]

      Mitchell, L. J.; Lewis W.; Moodye, C. J. Green Chem. 2013, 15, 2830.  doi: 10.1039/c3gc41477a

    40. [40]

      Cheng, P.; Qing, Z.-X.; Liu, S.; Liu, W.; Xie, H.-Q.; Zeng, J.-G. Tetrahedron Lett. 2014, 55, 6647.  doi: 10.1016/j.tetlet.2014.10.068

    41. [41]

      Sharma, U. K.; Gemoets, H. P. L.; Schroder, F.; Noel, T.; Eycken, E.V. ACS Catal. 2017, 7, 3818.  doi: 10.1021/acscatal.7b00840

    42. [42]

      Zhang, L.-L.; Zhang, G.-T.; Li, Y.-L.; Wang, S.-C.; Lei, A.-W. Chem. Commun. 2018, 54, 5744.  doi: 10.1039/C8CC02342E

    43. [43]

      Kawaai, K.; Yamaguchi, T.; Yamaguchi, E.; Endo, S.; Tada, N.; Ikari, A.; Itoh, A. J. Org. Chem. 2018, 83, 1988.  doi: 10.1021/acs.joc.7b02933

    44. [44]

      Ryu, I.; Tani, A.; Fukuyama, T.; Ravelli, D.; Fagnoni, M.; Albini, A. Angew. Chem., Int. Ed. 2011, 50, 1869.  doi: 10.1002/anie.v50.8

    45. [45]

      Okada, M.; Fukuyama, T.; Yamada, K.; Ryu, I.; Ravelli, D.; Fagnoni, M. Chem. Sci. 2014, 5, 2893  doi: 10.1039/C4SC01072H

    46. [46]

      Guo, W.; Lu, L.-Q.; Wang, Y.; Wang, Y.-N.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2014, 53, 1.  doi: 10.1002/anie.v53.1

    47. [47]

      Gu, L.-J.; Jin, C.; Liu, J.-Y. Green Chem. 2015, 17, 3733.  doi: 10.1039/C5GC00644A

    48. [48]

      Zhou, Q.-Q.; Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 11196.  doi: 10.1002/anie.201504559

    49. [49]

      Chow, S. Y.; Stevens, M. Y.; Akerbladh, L.; Bergman, S.; Odell, L. R. Chem.-Eur. J. 2016, 22, 9155.  doi: 10.1002/chem.201601694

    50. [50]

      Bergonzini, G.; Cassani, C.; Wallentin, C. Angew. Chem., Int. Ed. 2015, 54, 14066.  doi: 10.1002/anie.201506432

    51. [51]

      Zhang, M.-L.; Ruzi, R.; Xi, J.-W.; Li, N.; Wu, Z.-K.; Li, W.-P.; Yu, S.-Y.; Zhu, C.-J. Org. Lett. 2017, 19, 3430.  doi: 10.1021/acs.orglett.7b01391

    52. [52]

      Bergonzini, G.; Cassani, C.; Olsson, H.; Hçrberg, J.; Wallentin, C. J. Chem.-Eur. J. 2016, 22, 3292.  doi: 10.1002/chem.201504985

    53. [53]

      Dong, S.; Wu, G.; Yuan, X.; Zou, C.; Ye, J. Org. Chem. Front. 2017, 4, 2230.  doi: 10.1039/C7QO00453B

    54. [54]

      Wang, C.-M.; Song, D.; Xia, P.-J.; Wang, J.; Xiang, H.-Y.; Yang, H. Chem.-Asian. J. 2018, 13, 271.  doi: 10.1002/asia.201701738

    55. [55]

      Li, C.-G.; Xu, G.-Q.; Xu, P.-F. Org. Lett. 2017, 19, 512.  doi: 10.1021/acs.orglett.6b03684

    56. [56]

      Xu, S. M.; Chen, J.-Q.; Liu, D.; Bao, Y.; Liang, Y.-M.; Xu, P.-F. Org. Chem. Front. 2017, 4, 1331.  doi: 10.1039/C7QO00012J

    57. [57]

      Liu, Y.; Wang, Q.-L.; Zhou, C.-S.; Xiong, B.-Q.; Zhang, P.-L.; Kang, S.-J.; Yang, C.; Tang, K.-W. Tetrahedron Lett. 2018, 59, 2038.  doi: 10.1016/j.tetlet.2018.04.033

    58. [58]

      Ociepa, M.; Baka, O.; Narodowiec, J.; Gryko, D. Adv. Synth. Catal. 2017, 359, 3560.  doi: 10.1002/adsc.v359.20

  • 加载中
    1. [1]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    2. [2]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    3. [3]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    4. [4]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    5. [5]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    6. [6]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    7. [7]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    8. [8]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    9. [9]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    10. [10]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    11. [11]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    12. [12]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    13. [13]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    14. [14]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    15. [15]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    16. [16]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    17. [17]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    18. [18]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    19. [19]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    20. [20]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

Metrics
  • PDF Downloads(198)
  • Abstract views(3960)
  • HTML views(1521)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return